

Srilakshminarayana.G

Associate Professor - Quantitative Methods SDMIMD, Mysuru lakshminarayana@sdmimd.ac.in

Nilanjan Sengupta

Professor - HRM & OB SDMIMD, Mysuru nilanjan@sdmimd.ac.in

Mousumi Sengupta

Professor - HRM & OB SDMIMD, Mysuru mousumi@sdmimd.ac.in

Shri Dharmasthala Manjunatheshwara Research Center for Management Studies (SDM RCMS) SDM Institute for Management Development (SDMIMD) Mysuru - 570 011

(C)	Applied Resear	ch Project 2020, SD	4 Research Center for	Management Studies	(SDM RCMS), SDI	MIMD, Mysuru
-----	----------------	---------------------	-----------------------	--------------------	-----------------	--------------

Note:

All views expressed in this work are that of the author(s). SDM RCMS does not take any responsibility for the views expressed herein by the author(s).

No part of this publication can be reproduced or transmitted in any form or by any means, without prior permission of the publisher.

Preface

Research Center for Management Studies (RCMS) at SDMIMD has endeavoured to promote research in the field of management education in the Institute, in various ways. The Research Centre has encouraged faculty and students to actively take part in research activities jointly, collate and disseminate findings of the research activities through various types of projects to contribute to the body of knowledge to the academic fraternity in general, and management education in particular.

In this direction, keeping in line with the philosophy of promoting active research in the field of management to capture live situations and issues, the Research Center has taken a unique initiative to sponsor and encourage faculty members to carry out Applied Research Projects in various areas of management.

The duration of these projects is typically between four to twelve months. After completion of each project, after peer review, a publication is taken out, by the institute. The projects help the faculty members, and the students, who work under the supervision of the faculty members for these projects, to identify issues of current importance in the field of management in various sectors. Data is collected mostly through primary research, through interviews and field study.

The institute takes into account the time and resources required by a faculty member to carry out such projects, and, fully sponsors them to cover the various costs of the project work (for data collection, travel, etc), thereby providing a unique opportunity to the two most important institutional stakeholders (faculty and students) to enrich their knowledge by extending their academic activities, outside the classroom learning situation, in the real world.

From the academic viewpoint, these projects provide a unique opportunity to the faculty and the engaging students to get a first-hand experience in knowing problems of targeted organizations or sectors on a face to face basis, thereby, helping in knowledge creation and its transfer, adding to the overall process of learning in a practical manner, with application of knowledge, as the focus of learning pedagogy, which is vital in management education.

Dr. Mousumi SenguptaChairperson, SDM RCMS

Acknowledgement

We thank the SDME trust for providing the necessary support and encouragement for takingup the project and completing the project.

We thank Dr. N.R. Parasuraman, Director, SDMIMD, for motivating us to take up the project and providing constant support throughout the project.

We thank Dr. H. Gayathri, Deputy Director, SDMIMD, for her support and encouragement throughout the project.

We thank Prof. Shridhar and his team who have helped in providing necessary facilities to complete the project on time.

We thank all the faculty colleagues for their discussions during the conduct of the project.

We thank all the non-teaching staff for their support throughout the project.

We thank our families for their support and encouragement in completion of the project.

Dr. Srilakshminarayana.G Dr.Nilanjan Sengupta Dr. Mousumi Sengupta

Table of Contents

Executive Summary	I
Introduction	1
Technology Acceptance Model	13
Literature Review: Technology Acceptance Model in E-learning	18
Research Gap	41
Motivation for the Study and Problem Statement	42
Research Methodology	43
Adoption of meta-analysis in the current study	48
Model Building	50
Research Questions, Objectives and Hypotheses	154
Data Analysis and Findings	155
Conclusion	187
Managerial Implications	188
Limitations and Future Work	190
References	190

Executive Summary

E-learning is defined as a tool that uses computer network such as internet, to deliver learning to users (Cheng, 2011). One can say that it has changed the learning process and has opened gates for one to explore new learning opportunities and be updated on the latest developments. For the employees it is an opportunity to update themselves and be more productive, for the employers to encourage their employees to learn at minimal cost and contribute. They can provide all the facilities to make their employees learn. Teachers who wish to share their knowledge, can use these e-learning platforms to spread wisdom. Note that, system and platform are alternatively used in this report to indicate an e-learning platform or system. A platform will be successful if it is accepted by the users and received well by them. For this, one has to identify the factors that impact the platform and take them into consideration while designing a platform. Attempts have been made to identify the factors by using technology adoption model (TAM) and over the years, researchers have been extending the model by adding more factors. Each study proposes different factors and, changes with geographical region and user type. Also, those factors that are proved to be significant in one study are not significant in another study. Hence, there is a need to aggregate these findings and present them one place. Also, identify the factors that are significant/insignificant and build a comprehensive model. Though attempts have been made to achieve this, they are not complete and there is a need to include the latest developments and findings. Hence, we have taken up the current study and use meta-analysis as study methodology. Under this we have identified the studies that have considered TAM and extended TAM and collected data from these studies. A total of 128 studies have been considered and the information on the paths are collected. The information includes factors, paths between the factors and path coefficients (beta coefficients). Meta-analysis (MA) is used to identify the significant factors and build a comprehensive model.

In the first stage of MA, we have reviewed the literature related to e-learning and understood the problem and have decided to provide a solution. In the second stage, we have reviewed literature related to TAM and extended TAM to collected data from them. In the third stage, we have developed a coding process to collect the data from the studies considered. In the next stage, we have conducted MA to find the significant factors.

From the analysis, we have found the factors that are significant and built a comprehensive model. We have found that behavioural intention (BI), perceived usefulness (PU) and perceived ease of use (PEOU) are significantly related with AU. That is, to make a person use the system, one has to design the platform that will create an intention to use it, useful to learn, and easy to use the system for learning.

One has to design the platform such that, an attitude to use (ATU) the system can be created among the learners. For this, the platform should be useful for learning, easy to use, and the learning should be enjoyable.

For creating an intention (BI) to use the system, the designed platform should be useful for learning, easy to use, should create satisfaction towards learning process, overall system should be qualitative, should help the learner to fulfil the social norms or obligations, should make the learning enjoyable, should create an attitude to use the system and should make one feel self-sustainable while using the platform.

Note that, there is a link between the three factors ATU, BI, and AU. ATU is significantly related with BI and BI is related with AU.

From the analysis, we found that perceived usefulness (PEOU) is significantly related with PU. That is, a platform that is easy to use for learning, leads to a perception that it is useful for learning. Similarly, a platform that makes the learning enjoyable (PENJ) creates a perception that it is useful for learning. Among the extrinsic factors, anxiety (ANX), subjective norm (SN), content quality (CQ), information quality (IQ), cognitive absorption (CAB), self-efficacy (SE), system quality (SYQ), and experience (EXP), are significantly related with PU. If a platform is design such that, it doesn't create any anxiety, fulfils the social obligations of the learners, provides quality content, informative, makes one get absorbed in the learning, makes one self-sustainable in learning, overall system is qualitative, and gives one an opportunity to use their experience in learning, then it will be successful in creating a perception that it is useful.

We found that ANX, SN, SYQ, IQ, EXP, system accessibility (SA), SE, facilitating conditions (FC), CAB, and PENJ are significantly related with perceived ease of use (PEOU). Hence, a platform should not create anxiety, fulfils the social obligations, maintains overall quality, provides qualitative information, makes one use their experience for learning, gives access to use the platform optimally, make the learning self-sustainable, makes one to get involved completely in the learning, organizations or institutes that provide all the required facilities (technical and non-technical) for learners to use the e-learning platform, finally the entire learning process is enjoyable.

We found that perceived ease of use (PEOU) is significantly related with perceived enjoyment (PENJ). This indicates that, a platform that is easy to handle by the learners makes them enjoy the learning on the platform.

We finally found that, one can perceive that the platform gives them satisfaction towards learning if it is a qualitative system to use, information provided on the platform is qualitative, it is useful for learning, and easy to use.

From the above findings, we have built a comprehensive model (Figure-35) for e-learning adoption or continuance.

Learners who wish to choose an e-learning platform can consider all the factors found through this study and have a better learning experience. Employers can suggest their employees to choose such platforms and have a better learning experience. Teachers can choose a platform based on these aspects and spread their knowledge to the learners. Developers of an e-learning platform can take these aspects and design a platform.

1.1. Introduction

"E-learning" is a revolution in the education system, as it has opened gates for the wisdom to flow and reach the appropriate audience. It has helped students, professionals, corporates, teachers to update themselves on any aspect of interest and also helped to progress in their careers. It has created a platform for any individual to communicate with others and expand the horizons on the subjects. E-learning is the latest means of disseminating the wisdom and is acting as a platform to train the individuals with ease. It has given an opportunity for the teachers to find the right students and express themselves on their subjects of interest freely. Also, teachers have the autonomy of designing their own courses, modules, and styles. They have complete freedom in organizing the learning, in a disciplined way, that is effective and makes them introduce contemporary aspects into the learning. It has given them an opportunity to collaborate with scholars around the globe and share the learning with them regularly. E-learning has given students an opportunity to learn any topic of their choice and update themselves with contemporary developments in the same. It has helped them to expand their horizons and remain competent with the latest updates. It is a platform where students exchange their views and ask questions with others openly. Also, discuss with the course facilitators and instructors on various aspects related to their subjects. E-learning has given professionals/practitioners an opportunity to be a part of the learning process and share their learnings with larger audience. Their presence has made the platform to focus on practical issues than only on theoretical aspects. In a nutshell, one can say that E-learning has brought a compete change to the learning process of an individual and is a revolutionary change in the traditional education system. Businesses have gained a lot from E-learning. They could get their employees trained on e-learning platforms and update them on latest developments in their respective fields. It has given the employees to upgrade themselves and build careers using the same. It has also given an edge to few employees in getting promotions and shifts in their places/projects etc. It has helped organizations to get client appreciation and quality projects, in-time projects done. For those who couldn't visit an institute/university for a formal education, E-learning platforms are a boon and are fulfilling their thirst to learn and helping them to meet their dreams. It is seen as an easy way to learn than a full-time course at an institute/university.

Due to its introduction and later developments, many institutes/universities have designed effective elearning platforms to disseminate the wisdom. Interesting part of it is, wisdom is spread at a minimal cost in some cases and with no charges in other cases. The standard of the materials, lectures etc., have given everyone involved, an opportunity to have a quality learning.

For the institutes/universities, it is a very good platform to spread their brand and also increase their alumni base. A good business model where they can generate revenue with minimal cost and also provide quality education. Apart from this, it has created employment for many who are involved in designing the websites, course content etc. Overall it is a very good platform and helping the society in many dimensions.

At this stage, one can question on the factors that are motivating one to choose the E-learning platform for their advancement and on the link between the factors, growth of E-learning, opportunities, challenges etc., and on the popular platforms for learning, their processes etc. Many researchers have conducted studies that give information or answers to above questions. But they are all spread over on different websites, journals etc., and difficult for one to have a fair understanding on E-learning. Hence, there is a requirement for one to have a document that will at least organize these aspects at one place and give one an opportunity to look into the same to get the required information. The current project is such an attempt that aggregates the work of different researchers and present the same effectively, and also, find new linkages between the factors, and new dimensions to the existing aspects of E-learning.

1.2. Definition of E-learning and other aspects

One can understand E-learning as, the process in which the courses are taught through electronic means (smartphones, tablets, online platforms, laptops etc.). The courses are delivered online through internet, where the students can access the resources online, interact with the professors and other students in the class, get answers to the queries raised, and, graded live for the participation. Latest technologies are used for this purpose. In simple terms one can say that E-learning is, learning mediated by electronic media.

E-learning is for those who can maintain self-discipline, who can meet the timelines and discuss with other cohorts in the course through discussion board etc. It is a mandate for those who choose E-learning as means, to keep updated with the content given on the learning platform and be prepared to participate in the live classroom discussions. They should be prepared to submit the assignments, quizzes, tests etc., within the scheduled time. One has to be self-motivated, self-disciplined to complete the courses taken under E-learning system.

Institutes and universities that are providing e-learning has to check if, latest hardware and software are being used, proper resources have been uploaded, course content is updated, clarity in the transmission of the lectures, professors with updated and contemporary understanding of the concepts, contemporary concepts are taught, useful to the larger groups, course management system is upgraded and communicated properly to the students etc. Students have to check if, they are using the latest hardware and software as per the requirements of the training institute, activate the accounts given, accessibility of the course management system and understand the system properly, familiarity with the technology and usage of the same with ease, accepting the cookies of the browsers and checking the pop-up windows etc., read the introductory material sent, understand the course syllabus and coverage, having sufficient information about the course and pedagogy, set goals and priorities, planning schedule and effective time management etc. Overall, the institutes/universities or the students, proper preparation is very important for the smooth conduct of the courses.

E-learning provides one with benefits like, costeffective, saves time for the individuals who wish to learn, improves performance and productivity, quick learning and ease in completing the courses, and, has lower environmental impact. Learning will be effective if one designs the modules perfectly, uploads proper videos, uses gamification to teach, uses social forums for discussions, having more practical examples, addresses all types of audience, encourage discussions etc. Learning can become worst if only PowerPoints and no discussions, include too-long videos, irrelevant examples and gamification, low interactions etc.

1.3. A Brief History of E-learning

The first one to coin the word E-learning was Elliott Masie in 1999 at his TechLearn conference at Disneyworld. Till then, other are using the word online learning and after this, the word has become popular. In the year 1840 Issac Pitman taught his pupils shorthand via correspondence and the assignments were sent back by mail and he would send his pupils more work again. The first testing machine was invented in the year 1924 and in the year 1954 Professor BF Skinner invented "teaching machine", which helped schools to administer programmed instruction to the students. In the year 1960, the first computer-based program (CBT) known as PLATO-Programmed Logic for Automated Teaching Operations, was designed for students studying at University of Illinois, but was used by many schools in the surrounding area. With the introduction of computer and internet things have become easy for e-learning to become a popular learning platform. Today businesses use e-learning platforms to train their employees and the world in the time where MOOCS (Massive Open Online Courses), SOOCS

(Selective Open Online Courses) are dominant. The following figure gives the history of E-learning in a nutshell.

Figure-1 : History of E-learning Source: Retrieved from <u>https://filtered.com/</u> <u>blog/post/articles/the-history-of-e-learning on</u> 19.12.2019

1.4. E-learning at Global Level

Global E-Learning market is expected to grow from \$176.12 billion in 2017 to reach \$398.15 billion by 2026 with a CAGR of 9.5% (https://www.reuters.com/brandfeatures/venture-capital/article?id=72033 retrieved on 19.12.2019). Some of the drivers for this development are: need for trained workforce at low cost, reduction in the pricing for the learning options, need for the workforce to engage themselves in continuous learning, comfort in attending training sessions online rather than a traditional setup, urge

for the workforce to update themselves on the latest trends, urge for the younger generation to build the careers and climb the organizational ladder within short duration, safeguard their positions in the organizations, thirst for knowledge etc. The size may increase due to more developing nations looking for skill improvement and train the younger generations with latest trends. Sometimes the unavailability of the resources and cost, looking for world-class training with ease, quality of education, certification etc., may make these countries look for E-learning. Companies are keen on E-learning as, it has the ability to speed up employee training and reduce the employee training time. They believe that cutting the time will make the employees spend more time on their primary work roles, believe that they can achieve the benefits that they cannot achieve through E-learning. From the government's point of view, the spending on formal education may come down if E-learning increases. But, a mix of traditional with E-learning is important and E-learning may not replace the existing system completely. E-learning is an important component of the learning process of the millennials. They wish to learn while they earn and achieve mastery in their chosen fields and see E-learning as a platform that gives them an edge to change their jobs. Among the electronic means for e-learning, mobile learning will become very prominent and gives one a quick access to learn at any given point of time. At the same time, factors like change management, technology obsolescence and vendor- developer partnership are major restraints for growth of this market. The following information has been retrieved from https:/ /www.reuters.com/brandfeatures/venture-capital/ article?id=72033 retrieved as on 19.12.2019 and produced as it is.

Some of the key players in E-Learning the market include: -

Cisco Systems, Oracle iLearning, Tata Interactive Systems, Microsoft, Apollo Education Group, Educomp Solutions Ltd, SAP, McGraw-Hill Education, SkillSoft, The British Council, Aptara, Cengage Learning, Macmillan, Cornerstone on demand, Desire2learn,

Edmodo, Pearson, BlackBoard Learn, Docebo, SunGard.

Vendors Covered:

Content Providers, Faculty support, Service Providers

Learning Modes Covered:

Instructor-Led, Self-Paced

Types Covered:

Testing, Training

Technologies Covered:

Podcasts, Learning Content Management System, Learning Management System (LMS)/SaaS, Knowledge Management System, Application Simulation Tool, Mobile e-learning Rapid e-learning, Virtual Classroom, Online e-learning, Game Bases Learning, Massive Open Online Courses (MOOCS), Wearables and Others, Packaged Content, Other Technologies.

Applications Covered:

Academic e-Learning, Corporate e-Learning

End Users Covered:

Higher Education, K-12, Other End Users

Regions Covered:

North America, US, Canada, Mexico, Europe, Germany, UK, Italy, France, Spain, Rest of Europe, Asia Pacific, Japan, China, India, Australia, New Zealand, South Korea, Rest of Asia Pacific, South America, Argentina, Brazil, Chile, Rest of South America Middle East & Africa, Saudi Arabia, UAE, Qatar, South Africa, Rest of Middle East & Africa.

The following figure gives the E-learning market: general analysis

Figure-2:

E-learning Market; General analysis

Source: https://blog.coursify.me/en/e-learning-marketforecast-2019/ retrieved as on 19.12.2019

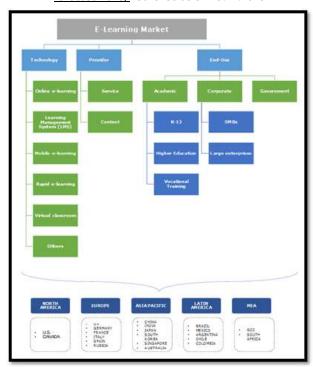


Figure-3

E-learning Market Segmentation

Source: https://www.arizton.com/market-reports/e-learning-market-size-2024 retrieved as on 19.12.2019

Top 50 universities that are offering e-learning worldwide:

https://www.onlinecoursereport.com/top-50-universities-offering-online-courses/ retrieved as on 19.12.2019

Table-1: List of universities

1.5. Learning Platforms and other technical details related to E-learning

<u> </u>	arriting reactioning and other te
	University Name
#50 – The	omas Edison University
#49 – Pei	nnsylvania State University
#48 – Va	lley City State University
#47 – Un	iversity of Minnesota – Twin Cities
#46 – Un	iversity of Wisconsin – Stout
#45 – Wa	ashington State University
#44 – No	rtheastern University
#43 – Mi	ssouri State University
#42- Texa	as Tech University
#41 – Kei	nnesaw State University
#40 – We	est Texas A&M University
#39 – Sar	m Houston State University
#38 – Un	iversity of Alabama
#37 – We	estern Kentucky University
#36 – Oh	io State University
#35 – Em	bry-Riddle Aeronautical University
#34 – Tei	mple University
#33 – Un	iversity of Illinois at Springfield
#32 – Old	d Dominion University
#31 – Uta	ah State University
#30 – Un	iversity of Texas – Permian Basin
#29 – Mi	not State University
#28 – Be	midji State University
#27 – Va	ldosta State University
#26 – We	estern Governors University

٦.	t details related to E tearning
	#25 – University of Alaska Fairbanks
	#24 – University of Oklahoma
	#23 – University of Alabama at Birmingham
	#22 – Colorado State University
Γ	#21 – University of North Dakota
	#20 – Arizona State University
	#19 – Florida International University
I	#18 – Westfield State University
	#17 – Lamar University
	#16 – University of Florida
	#15 – Liberty University
	#14 – University of Central Florida
	#13 – California University of Pennsylvania
	#12 – Southeast Missouri State University
	#11 – Robert Morris University
	#10 – University of North Carolina – Wilmington
	#9 – Indiana Wesleyan University
	#8 – Indiana University
	#7 – University of Massachusetts
	#6 – Oregon State University
	#5 – University of Maine – Augusta
	#4 – University of Arkansas
	#3 – Northern Arizona University
	#2 – Fort Hays State University
	#1 – New England Institute of Technology
	·

The following figure gives more platforms and their details:

Figure-4 : Details of the platforms that offer E-learning based on editor's choice

Source: https://in.pcmag.com/cloud-services/104247/the-best-online-learning-platforms-for-business retrieved as on 19.12.201

Bast For	Enterprises	Enterprises and Training Companies	Small to Midsize Businesses	Enterprises and Training Companies	Enterprises	Small to Midsize Businesses	Enterprises and Training Companies	Enterprises	Training Companies
Free Trial	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
CRM Integration	1	~	1	~	~	~	~	~	-
egrates with E- Commerce	-	~	_	~	~	~	~	1	1
grates with Web conferencing	_	~	1	~	1	~	V	/	-
limited Storage	_	~	~	-	~	1	~	~	/
Samification Features	-	~	_	1	_	_	~	_	_
ingle Sign-On (SSO)	~	~	~	1	-		~	~	~
3-Portal Options	_	~	-	1	_	~	1	~	~
Unlimited Courses	_	1	1	~	1	~	1	1	-
Unlimited Users	_	-	-	~	-	~	_	~	1
Read Review	Absorb LMS Review	Docebo Review	Instructure Bridge LMS Review		SAP Libnos LMS Review	Aris LMS Review	DigitalChalk Corporate LMS Review	Minoflash Raylew	Firmwater Review

The following gives the details of the E-learning platforms:

1. LinkedIn Learning

LinkedIn Learning offers a wide variety of expert-led online learning courses for teams and organizations. Unlike many other e-learning platforms, the business plan allows you to bring custom content into the platform and that way make courses more applicable to your organization.

' Pros:

- A huge library of learning materials spanning several different areas
- The ability to customize content based on your organization's needs

Ô&b Cons:

- · Many of the courses are only available in English
- · Most materials are only delivered in video format

2. Pluralsight

<u>Pluralsight</u> is a technology-focused e-learning platform that helps your team upskill across design, development, security, and cloud.

' Pros:

- High-quality and highly specialized expertauthored courses across a variety of technology topics
- The ability to track employee's progress across their learning paths

Ô&b Cons:

No certified courses

3. Udemy for business

Udemy for Business is a corporate learning platform that offers courses in business, tech, and design.

' Pros:

- · In-depth courses on a wide variety of topics
- User-friendly interface especially on the mobile app

 The ability to track the participants' learning progress

Ô&b Cons:

 A lack of shorter, summary courses for on-thego learning

4. Coursera

Coursera has partnered with world-class universities and businesses to bring quality courses to organizations of all sizes.

' Pros:

- Certified courses from top universities and organizations
- Video lessons are paired with interactive assessments, quizzes and peer-reviewed assignment to deliver a more holistic learning experience
- Custom courses available with the enterprise plan

Ô&b Cons:

- The interface is not the most intuitive
- A lack of shorter courses

5. Skillsoft

Skillsoft is a corporate e-learning platform that offers perhaps the most comprehensive set of learning materials to companies. Including tactical courses like how to use Microsoft Excel to highly specialized expert-led courses on digital transformation, Skillsoft serves a variety of different learning needs.

' Pros:

- Perhaps the industry's widest selection of courses
- Convenient mobile app

Ô&b Cons:

· Occasional issues with a long loading time

· Reporting features could be improved

6. uQualio

uQualio is a video-based e-learning platform that comes with handy practice quizzes and gamification features. Unlike many of the more traditional e-learning platforms, it favors shorter, bite-sized content and interaction between the participants.

' Pros:

- · The ability to build your own courses
- Packed with quizzes and other interactive features
- Support for bite-sized content that can be consumed on-the-go

Ô&b Cons:

 Launched in 2017 and a lot of the features are still being developed

7. Mind Tools

Mind Tools is a management and leadership training platform that offers a catalog of learning resources.

' Pros:

- Clear focus on management, leadership, and business-related content
- Materials available for all knowledge levels: beginner, intermediate, and advanced

Ô&b Cons:

 Most of the content is in article format, and not available offline

8. Cornerstone

Cornerstone is an e-learning content subscription service that allows you to order tailored content for your organization's LMS.

' Pros:

 Customizable platform, where you can set different access levels to different users and create custom welcome messages to each group

Ô&þ Cons:

- · Limited reporting functionalities
- Limited customer support

9. OpenSesame

OpenSesame is an e-learning solution that helps you curate the right content for your learning program.

' Pros:

- · A wide variety of courses
- Helpful customer service with short response times

Ô&b Cons:

- The courses leading up to a certification can be pricey
- Limited localization to different languages

10. Grovo

Grovo is a microlearning platform that offers corporate customers bite-sized mixed-media lessons on the go.

' Pros:

- Mixed-media lessons, e.g. short videos that are supplemented with quizzes
- Gamification features that allow organizing internal learning competitions

Ô&b Cons:

- Some of the videos use cheesy stock images to illustrate serious concepts
- At times, the quizzes are too easy, and can therefore be construed as disengaging

11. Udacity

Udacity helps forward-thinking organizations train their

technical teams on topics like machine learning, data science, and artificial intelligence.

' Pros:

- Tons of free, high-quality courses on technical topics — even emerging ones
- Nano degrees offer a more comprehensive view of a topic
- · Great quizzes at the end of each lesson

Ô&b Cons:

 No interaction possibility between the learner and the instructor

Learning management systems (LMS)

1. Moodle & Microsoft Teams

We know, we know. While <u>Moodle and Microsoft</u> <u>Teams</u> are technically two different platforms, they now offer a seamless integration, which means that you can bring collaboration directly into your LMS.

' Pros:

- Tons of customization options and different plug-ins
- Smooth integration between the two platforms, which allows learners and facilitators to interact with one another

Ô&b Cons:

- While the integration is great, having two separate platforms can make the learning experience a bit noisy for everyone involved
- Creating a continuous learning journey is difficult, since Moodle and Teams function as more of a content and project management tool than an interactive learning platform
- A lot of Moodle users find the interface a bit difficult to navigate and use, which can have serious consequences in terms of the results of your learning initiatives

2. Lessonly

<u>Lessonly</u> is a modern training software that helps customer-facing teams such as sales and customer success learn and practice skills that they need to succeed in their roles.

' Pros:

- Lessonly makes it easy for admins to create structured, user-friendly learning materials for employees
- · World-class customer success team

Ô&b Cons:

- Reporting only comes in a CSV format and is more focused on per-user data than per-lesson data
- No white-label support in terms of fonts, colors, and logos

3. TalentLMS

<u>TalentLMS</u> is a cloud-based LMS perfect for training employees, partners, and customers.

' Pros:

- · Support for various different content types
- The secure cloud-based storage makes sure that your data is safe within the platform
- Robust reporting capabilities

Ô&b Cons:

- Some limitations in the mobile app's user interface
- Limited email notification options

4. Eloomi

<u>Eloomi</u> is a hybrid between a learning management system and a performance management software.

' Pros:

- · Intuitive user interface for admins and users alike
- · Clever gamification features

 Good customer support and seamless implementation

Ô&b Cons:

Limited support for different languages

5. Eurekos

<u>Eurekos</u> is a content-first learning management system that delivers powerful administration, analytics, and social features.

' Pros:

- Eurekos makes it easy to reuse and recycle existing learning content
- · Courses are easy to structure and build
- Advanced analytics features

Ô&b Cons:

 Tons of features, which can be a downside for admins who don't have time to learn how to use them

6. iSpring

<u>iSpring</u> is a cloud-based learning management system that allows you to teach and assess employees online.

' Pros:

- · Setting up a new course is very easy
- · Helpful support with fast response times

Ô&b Cons:

 Some users have reported problems with integrating iSpring into their existing tools

7. Docebo

<u>Docebo</u> is an online training tool for employees that comes with a fully customizable interface and tons of useful automation features.

' Pros:

- Modern look and feel
- · Frequent updates to the platform

Ô&b Cons:

- The admin side of the platform can be difficult to navigate
- Occasional bugs on the platform in conjunction with the software updates

8. Bridge

Bridge is a learning solution that makes it easy to onboard new employees and coach existing ones.

' Pros:

- Simple and streamlined approach to remote employee training
- Implementation is fast and no user training is required to get started

Ô&þ Cons:

- · Limited reporting capabilities
- · Lack of interactive features

9. Adobe Captivate Prime

Adobe Captivate Prime is a learning management system that allows you to deliver and track e-learning efforts.

' Pros:

- · Beautiful UI with nice graphics
- Great reporting features
- Ready-made email templates and advanced automation capabilities

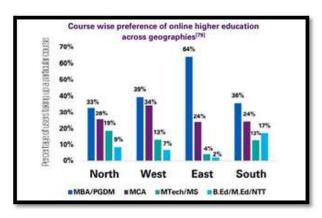
Ô&b Cons:

· Not easily integrated with 3rd party software

We now present the details related to e-learning in India.

1.6. E-learning in the Indian Context

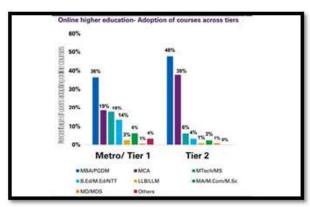
We now present few details related to E-learning in the Indian context and also growth of the same in India.


In India, the education system ways back to ancient days where the students visit the place (Gurukul) of

the teacher and stays there for 12 years, till they are proficient in all the aspects. It is seen as all-round development of the student, who enters the system. Over the years, the system has been taken over by the British education system. Under this, the students visit the school/Institute/University to receive the teachers and learn various subjects from them. Even under this, a student used to get awareness on various subjects. Over the years it has been replaced by the system where the student specializes in few subjects and establishes as the one proficient only in those subjects. With change in the time, the tastes and interests of the students are changing and again they are interested to gain awareness on multiple aspects, keeping their specializations fixed. For example, a student who specializes himself in management, wishes to create an awareness on other subjects. This is the current trend and can be seen in majority of the students. Especially this can be seen more in the students who study management courses, engineering courses, other degrees like B. Com, BBM, BBA etc. These students wishe to gain additional certifications on other subjects, so that they can position themselves as compared to other students. Getting a job in a corporate has been the main goal of the majority of the students and having additional certification. The source for the additional certification is, the institutes that offer these with a prescribed fee and a course curriculum, that is limited. Also, the options that they have are limited and getting more certifications has become a costly affair to majority of them. Along with this, the time they can spend has become a hurdle and the challenge is to manage the time appropriately. For the corporates who are already working, it has become important to advance themselves in the latest updates in their respective fields and build a career. For the teachers, it has become an important inner urge to disseminate the wisdom and new ideas to the society. Irrespective of the category, all the individuals in the society have started looking at avenues that will give them opportunities to learn or spread wisdom. But the opportunities are limited in nature and this is where the advent of E-learning has helped them to achieve their targets. With the change in the time, the targets have been changed from acquiring a certificate to acquiring the necessary wisdom. Also, those who are working in corporates are now looking at learning the latest aspects in their fields and become productive to the organizations they are working. The E-learning platforms have helped students to achieve their dreams of learning new aspects with minimal cost, time, and more comfort. Similarly, it has helped corporates to fulfil their dreams of updating themselves in the latest developments in their fields and better their positions in the organizations, for organizations to train their employees with minimal cost, time and effort. For teachers, it has opened gates to disseminate ideas and develop latest course curriculum, course content etc., with complete autonomy. In a nutshell, one can say that it has changed the complete scenario of the Indian education system.

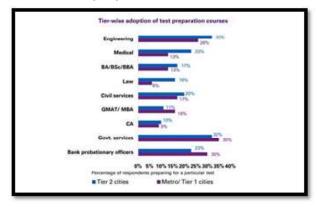
In India, the digital learning has evolved during the years 2002-2003 with the technological advancements spreading to the education sector. The E-learning in India is witnessing a growth rate of 25 per cent year-on-year and is expected to touch \$1.96 billion by 2021. In India, there are more than 1.5 million schools and 18,000 higher education institutes and this creates a big market for digital education in India. E-learning is not seen as a luxury but has become a necessity. With increase in the usage of smartphones and technology, it has become easy for one to utilize the e-learning platforms for updating the skills.

According to the report published by KPMG, elearning in higher education in India is at an early stage has seen several universities starting the courses on e-learning platforms. The demand for MBA, MCA through e-learning has increased as compared to other courses. The following figure gives the demand for the courses across different geographical regions.


Figure-5 : Course wise preference of online higher education across geographies

Source: KPMG Report: Online Education in India: 2021

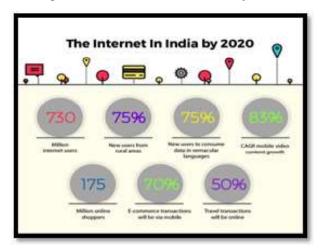
The report also gives number of the individuals looking for courses in tier-1 and tier-2 cities.


Figure-6 : Online higher education adoption of courses across tiers

Source: KPMG Report: Online Education in India: 2021

Along with the regular courses, there are many who look at e-learning for preparing for entrance examinations. The following figure gives the number of students who look for e-learning for preparing for various entrance examinations.

Figure-7: Tier-wise adoption of test preparation courses


Source: KPMG Report: Online Education in India: 2021

E-learning in India helps the candidates preparing for examination by providing the students to access the webinars, mock tests, videos, counselling etc. Students also get an opportunity to interact with the instructors who provide coaching to the students. Overall, elearning platforms are helping the students to learn the techniques of cracking the examinations with minimal cost, effective time, and comfortably. Elearning in India has become very popular and ease due to internet penetration, increasing smartphone usage, flexibility of time, quality education, affordability, availability of study materials etc.

Distance education in India was started in the year 1962 to meet the demand for higher education. Delhi university has established School of Correspondence Courses and Continuing Education in 1962. Based on its success, the education commission (1964-66) recommended the expansion of correspondence education and UGC has formulated guidelines for introducing correspondence courses in India. As of now there are 45 universities including 4 deemed universities offering correspondence courses in the country. In 1985, Indira Gandhi National Open University (IGNOU) was started that offers several courses. Similarly, other universities have been started that offer correspondence courses. Later developments include universities offering online courses. For example, University of Mysore offers online courses.

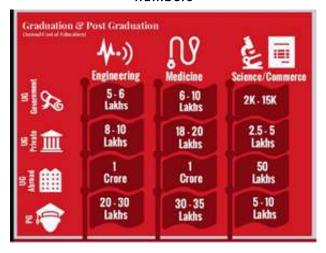

We now present some statistics related to the growth of E-learning in India. The following graphs give the same and they reflect upon the key drivers of elearning growth in India.

Figure-8 : The internet in India by 2020

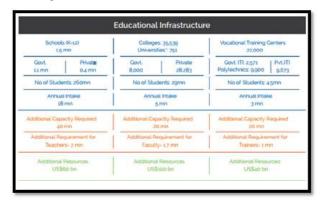

Source: http://www.aurumequity.com/the-online-education-industry-in-india-present-and-future/ retrieved as on 20.12.2019

Figure-9 : Graduation and Post-graduation numbers

Source: http://www.aurumequity.com/the-online-education-industry-in-india-present-and-future/ retrieved as on 20.12.2019

Figure-10 : Educational Infrastructure

Source: http://www.aurumequity.com/the-onlineeducation-industry-in-india-present-and-future/ retrieved as on 20.12.2019

Government has taken the initiative to launch several programmes under the initiatives such as 'Digital India' and 'Skill India' to spread digital literacy, create a knowledge-based society in India, and implement three principles 'access, equity and quality' of the Education Policy.

- e-Basta (schools books in digital form)
- e-Education (all schools connected with broadband and free Wi-Fi in all schools and develop MOOCs – develop pilot Massive Online Open Courses)
- Nand Ghars (digital tools as teaching aids)
- SWAYAM (MOOCs based on curriculum taught in classrooms from 9th class till post-graduation)
- India Skills Online (learning portal for skill training)

In order to establish digital infrastructure, the government has also launched National Optical Fibre Network (NOFN) which aims to expand broadband connectivity and faster network. Taking into consideration the changing job scenario in India these initiatives have been taken by the government. Also, the unemployment in India is making individuals to look for courses, which they can complete in short duration of time so that it will help them in fetching jobs.

Among various challenges faced for implementation of e-learning in India, insufficient digital infrastructure, poor learning engagement, lack of standardization, credibility and quality, language of the courses, low completion rates are the key challenges.

1.7. The current work and few details on the same

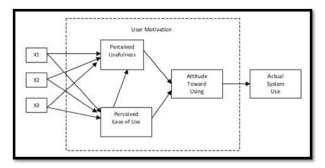
Apart from these challenges, another important challenge is to find the motivating factors that are really making individuals to choose the e-learning platforms for their progress. Choice of platforms depends on several factors such as, availability, convenience, affordability and apart from this depends also on psychological aspects of the individual who wish to choose the platforms for learning. For example, how one perceives the e-learning process, how one adopts to the changes in the technologies etc. With respect to this, many researchers have studied and proposed several factors that are motivating an individual to choose e-learning platforms. Few also have used models like technology acceptance model (TAM), theory of planned behaviour (TPB) etc., to identify the factors. These models look at various aspects related to one's behavioural aspects and aspects related to acceptance of technology. For example, TAM is built to study the user's acceptance of information systems and technologies. But all these give different factors that are specific to the model and there is a necessity to integrate all the factors at one place to give a comprehensive model. This comprehensive model has to link the factors appropriately and finally give the connection between them, to produce valid suggestions to the e-learning service providers, teachers and users. The current study is an attempt to achieve this and uses metaanalysis as the research methodology. Under this, we try to integrate various factors identified under these models and attempt to provide valid linkages between them. We then finally use Meta-analysis to establish new relations between the factors.

The report is organized in the following way. We first present the literature related to various model used

by the researchers to identify the factors. For example, those related to TAM, Extended TAM etc. Note that, the literature review presented will be used to build a comprehensive model. This is followed by sections on research gap, motivation for conducting the study, problem statement, research methodology, adoption of meta-analysis in the current study, model building, research questions, research objectives, research hypotheses. In the next section, we present data analysis and key findings. This is followed by conclusion, managerial implications, limitations and future work. In the last section we present the references. Note that, the references are given yearwise and not alphabetical. Also, references other than e-learning are given separately.

Note that, our focus is on identifying the factors that make one to choose e-learning platforms to enhance their knowledge. Hence, we present the literature and construct everything related to this. Aspects related to instructors choosing the e-learning platforms, organizations choosing e-learning platforms, and aspects related to e-learning service providers developing the platforms etc., will be presented as future work and extension of the current work. Also, we do not restrict the model building to any geographic region and build a general model from the point of users of e-learning.

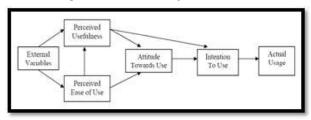
We now present the literature on models used to identify the factors that motivate one to choose elearning.


2. Technology Acceptance Model

In this section, we present the technology acceptance model and history of the same.

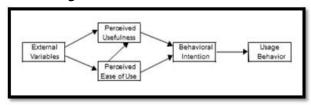
Technology acceptance model (TAM) is developed by Davis (1986) and deals with predicting the acceptability of a system or technology. The main purpose of the model is to identify the aspects that lead to acceptability of the system or technology and make necessary changes to suit the requirement of the users. It is based on two major aspects: Perceived

usefulness (PU) and Perceived ease of use (PEU). Perceived usefulness looks at the degree to which an individual believes that using a system or technology will improve the performance. Perceived ease of use refers to the degree to which a person believes that the use of a system or technology will be effortless. The following is the TAM model, originally proposed by Davis (1986).


Figure-11: TAM proposed by Davis

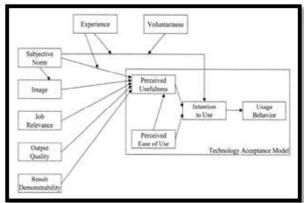
Source: From the paper of Davis (1986)

The above model links the attitude of an individual to the actual usage of the system or technology. Davis proposes that not only an individual's attitude that determines the actual usage, but also an individual's perception that is will impact the performance. That is, even if an individual doesn't welcome a system or technology to be introduced, he/she may use the same with high probability if he/she perceives that it will improve the performance. Another aspect that one has to note is, TAM links perceived usefulness and perceived ease of use directly. Later in 1989, Davis et.al. demonstrates that the link between perceived usefulness and intention to use is stronger than perceived ease of use. This shows that an individual's perception that a system or technology will be useful improves his/her intention to use the same. The following figure give the model.


Figure-12: TAM by Davis et.al

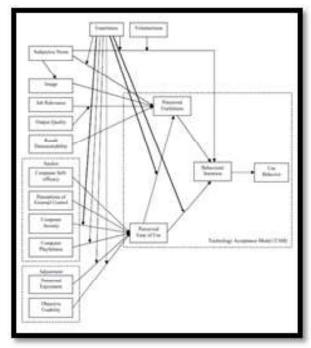
Source: From the paper of Davis et.al (1986)

The final version of TAM was developed by Venkatesh and Davis (1996), under which the attitude construct was excluded and, both perceived ease of use and perceived usefulness are directly linked to intention to use. The following figure gives the same.


Figure-13 : Final version of TAM

Source: From the paper of Venkatesh and Davis (1996)

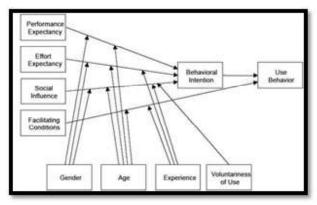
In 2000, Venkatesh and Davis proposed TAM 2, which provides more reasons for an individual to use a system or technology. TAM 2 proposes that an individual's mental assessment of the link between important goals to attend at work and the consequences that arise due to the usage of the system while performing job tasks acts as a basis for forming perceptions on usefulness of the system. The following figure gives TAM 2.


Figure-14 : TAM 2

Source: TAM 2 from Venkatesh and Davis (2000)

Venkatesh and Bala (2008) combined the model proposed by Venkatesh and Davis (2000) and Venkatesh (2000), named as TAM 3. Figure below gives the same.

Figure-15: TAM 3



Source: Paper of Venkatesh and Bala (2008)

Note that under the above model, four different types are included: the individual differences, system characteristics, social influence, and facilitating conditions, which are determinants of perceived usefulness and perceived ease of use. In TAM 3 model, the perceived ease of use to perceived usefulness, computer anxiety to perceived ease of use and perceived ease of use to behavioural intention were moderated by experiences.

Venkatesh et.al. (2003) develops a model, Unified Theory of Acceptance and Use of Technology (UTAUT) that has four predictors of users': Performance expectancy, Effort expectancy, Social influence, and Facilitating conditions. The following figure gives the same.

Figure-16 : UTAUT

Source: Paper of Venkatesh et.al. (2003)

In the current study we look at TAM in E-learning. Note that, E-learning platform is seen as a system that facilitates courses with various options and an individual chooses appropriate courses from available list. From the above discussion we note that, almost all the models (TAM, TAM 2, TAM 3, UTAUT) propose various predictor variables/factors for measuring the actual usage of the system or the technology.

We are interested to check which of these factors are significantly related to selection of E-learning platform, using a meta-analysis approach. We perform this analysis under each of the models and find the factors that are significant. Note that, meta-analysis aggregates the research findings from various studies at one place and new relations, hypotheses can be established using the same. We now look at literature on how these models are integrated with E-learning. We consider the research papers from 2000-2019, a period of 19 years. Before presenting the literature review, we present, in brief, the constructs considered in the model.

Note that, the objectives of the study are established based on the literature and hence more emphasis will be on collecting the appropriate studies exhaustively and synthesizing the same, using meta-analysis.

2.1. Constructs in TAM/Extended TAM

In this section, we present the explanation to the constructs/factors and the variables considered in the

technology acceptance model. We first present the constructs included in the final TAM and then factors in the extended versions of the TAM.

a. Perceived Usefulness (PU)

PU is defined as "the degree to which a person believes that using a particular system would enhance his or her performance" (Davis (1989)). When a system is introduced, one may look at how it will help them in increasing their performance. This is one of the important constructs in the technology acceptance model (TAM) that takes into consideration an individual's perception on usefulness of a system. PU is measured using set of items (questions) or factors, which are designed as unique aspects for a given situation. That is, items and factors are considered specific to a given situation and measured using appropriate scaling. In the context of e-learning, PU refers to the extent to which the e-learning system or platform is useful to the user (learner) in enhancing the learning. Unless this aspect is taken care, the system may not be significant to the learners. Note that, PU can be measured using customised items or external factors. Customised items are statements designed by the researcher specific to the situation. The external factors used to measure PU include, anxiety, self-efficacy, subjective norm, enjoyment, etc. These external factors are also measured using items designed specific to the given situation. In the current study, we try to identify more external factors that are significant in measuring PU, in the context of elearning. Note that, PEOU is an important factor linked with PU in the model.

b. Perceived Ease of Use (PEOU)

PEOU is another important construct in the TAM. It refers to "the degree to which a person believes that using a particular system would be free of effort" (Davis (1989)). Under this, one looks for the effort that one has to put to understand the system, its usage etc. Similar to PU, it is also an important factor that has to be taken into consideration for the success of a technology or system. In the context of e-learning,

the system or the platform has to be user friendly and should make the user feel comfortable while using the same for learning. The effort taken to use the system should be minimal and the learner should be able to access with ease the materials, videos, other technical aspects related to the system or platform. PEOU is measured using items or factors again based on the specific situation. For example, it is measured using system quality, content quality, subjective norms etc. Note that PEOU is an antecedent to predict PU in TAM. Int eh current study, we make an attempt to find other external factors that are significant with PU.

c. Behavioral Intention (BI)

BI refers to the intention of the user/learner to choose e-learning systems for learning process. Bi is the factor that is predicted using the antecedents like PU and PEOU etc. Bi is linked with Actual system usage (AU). BI is also measured using items and then linked with other factors in the model. In the current study we make an attempt to find the strength of the factors in predicting BI.

d. Attitude Towards Using (ATU)

ATU refers to the degree to which a person has a positive or negative feeling towards e-learning systems. This has PU and PEOU as antecedents and is linked with BI. Few studies have excluded ATU and considered only BI and AU. In the current study we make an attempt to find the strength of the antecedents in predicting this factor.

e. Actual System Usage (AU)

AU refers to the final decision on usage of the elearning platforms. This factor is the dependent variable, which is predicted using the antecedents such as BI, ATU, PU. In this study we try to find the strength of these factors in predicting the AU.

f. Subjective Norm (SN)

SN is considered as a part of the social influence factor and it refers to an individual's perception on what others think of him\her and what they expect them

to do or not to do. This an external factor to PU, PEOU and AU. In this study we try to find the strength of this factor in explaining the behaviour of PU, PEOU and AU. In the e-learning context, SN is seen as influence of other's opinion on the users in choosing (not choosing) the platform for learning.

g. Image

The degree to which an individual perceives that use of an innovation will enhance his or her status in his or her social system (Moore & Benbasat, (1991)). In the e-learning context, an individual can choose elearning platform for gaining necessary skills to earn notoriety among their peers. In the current study we look at the strength of this factor in predicting PU.

h. Job Relevance (JR)

Job relevance is defined as, "the degree to which as individual believes that that target system is applicable to his or her job" (Venkatesh and Davis (2000)). In the e-learning context, JR is the extent to which the e-learning is useful to the learner in fulfilling the gaps/ updation of the learning process. One has to feel that the e-learning course/platform is applicable in the learning process. We study the strength of JR in predicting PU.

i. Output Quality (OQ)

OQ is defined as, "the degree to which an individual believes that the system performs his or her job tasks well" (Venkatesh and Davis (2000)). It is an important factor in inspecting whether the system does the job well and helps in excluding those systems that do not perform well. An e-learning platform that helps a learner in gaining wisdom that improves his/her job performance is seen as the one with better output quality. OQ is linked to PU and in the current study we look at the strength of the same in predicting PU.

j. Result Demonstrability (RD)

RD is defined as, "the degree to which an individual believes that the results of using a system are tangible, observable, and communicable" (Moore and Benbasat (1991)). In other words, the one who uses a system should be able to attribute the benefits they received in job performance to the system. RD is related to PU and we try to identify the strength of RD in predicting PU. In the e-learning context RD can be related to, learners attributing the gains in their job performance to the e-learning course/platform. It is very important for one to design a course/platform that will give proper benefits to the learner.

k. Computer Self-efficacy (CSE)

CSE is defined as, "the degree to which an individual believes that he or she has the ability to perform a specific task/job using the computer" (Compeau and Higgins (1995)). That is, self-efficacy is an individual's confidence in using the system/platform in their own capacity. In e-learning, CSE is an individual's own ability in using the e-learning system. CSE is linked to PEOU and we try to identify the strength of the same in predicting PEOU.

l. Perceived External Control (PEC)

PEC is defined as, "the degree to which an individual believes that organizational and technical resources exist to support the use of the system" (Venkatesh et al., 2003). That is, an individual should feel that the organization he/she is working should have necessary resources to support their learning process. PEC is also called as facilitating conditions (FC) as complex systems need organizational support for implementation. PEC is linked to PEOU and the same is considered in the current study, to build the model.

m. Computer Anxiety (CA)

The degree of "an individual's apprehension, or even fear, when she/he is faced with the possibility of using computers" (Venkatesh, 2000). That is an individual who is free of fear of using the computer, will be more comfortable in using the same and perceives it as easy. CA is an emotional reaction and fear to use a computer, may lead to negative opinion towards using the e-learning system. CA is usually linked with PU.

n. Computer Playfulness or Perceived Playfulness (PP)

It is defined as, "the degree of cognitive spontaneity in microcomputer interaction" (Webster & Martocchio, 1992, p. 204). It is linked with PU.

o. Perceived Enjoyment (PENJ)

The extent to which "the activity of using a specific system is perceived to be enjoyable in its own right, aside from any performance consequences resulting from system use" (Venkatesh, 2000, p. 351). It is important factor in the success of an e-learning system. When a user of the system perceives that the e-learning system he/she uses is enjoyable, then it will have a better receptivity. PENJ is linked with PEOU.

These are important factors usually considered in the model and apart from these, there are other factors specifically related to e-learning system. We present the same in the summary table, constructed based on literature review. We now present the literature review related to TAM in e-learning.

3. Literature Review: Technology Acceptance Model in E-learning

In this section, we present the literature related to TAM and extended TAM in E-learning. We present the paths that are significant between the constructs, between the external variables and the constructs. The same will be used under meta-analysis. We have considered the papers published between 2000 and 2019 and present the key findings of all the studies. The research gap is presented separately. The key words used for search are "TAM in E-learning", "TAM in Web-based learning", "Perceived use of use/ usefulness in E-learning", "TAM in online learning" etc. Note that, we consider the variables found from the literature and check for suitability of the same to the model. Any variable(s) that doesn't have sufficient strength or evidence will be ignored. The literature presented is a flow of the independent studies conducted at different periods of time, with different respondents, and at different places. But, all of them

are related to E-learning. Ultimately, these findings will be used in meta-analysis and model building.

Brown (2002) studies the behaviour of the South African students with respect to their acceptance of web-based learning. The study found perceived ease of use as the main predictor of both usage and perceived usefulness. The sample size considered for the study was 78 and regression analysis was used to test the proposed hypotheses. Among the external variables of the model, ease of understanding and ease of finding (technological characteristics), and, self-efficacy and computer anxiety (user characteristics) are significant with respect to perceived ease of use.

Yi and Hwang (2003) extends the technology acceptance model by incorporating self-efficacy, enjoyment, and learning goal orientation. 109 students were considered as the respondents and used partial least squares to build the model. They found that enjoyment is significantly related with usefulness, with ease of use and with self-efficacy, and self-efficacy is significant with ease of use and use. Also, learning goal orientation is significantly related with self-efficacy, and PU, PEOU are related with BI. Finally, BI is related with use.

Martins and Kellermanns (2004) studies the acceptance of web-based course management system amongst B-school students and finds that, perceived incentive, perceived faculty encouragement, and peer encouragement are positively related to perceived usefulness of the system. Also finds that, awareness of the capabilities, perceived availability of technical support, and prior experience with computer and web use are positively related with perceived ease of use. Reponses were collected from 243 students and structural equation modelling was used to build the model.

Gong et.al (2004) attempts to identify the external factors of the IT acceptance in the education sector amongst the teachers. They combine the technology acceptance model (TAM) and social cognitive theory to build a model. They find that computer self-efficacy

is significant with perceived ease of use and with teachers' intention to use the web-based learning. A final sample of 146 teachers' responses were considered and model was built using partial least squares.

Ong et.al (2004) considers engineers as the target population and studies the significance of perceived credibility on the behavioural intention to use elearning. Their proposed model consists on computer self-efficacy, perceived usefulness, perceived ease of use, and perceived credibility, as constructs that influence the behavioural intention. Their results show that perceived credibility has a significant link with the behavioural intention to use e-learning, computer self-efficacy has a significant link with perceived usefulness, ease of use and credibility. Interestingly, perceived ease of use is significantly related to credibility. To build the model, they have considered 140 full responses and used linear structural equation modelling (SEM) to build the model.

Liao et.al. (2004) studies the students' acceptance of web-based learning and uses Unified Theory of Acceptance and Use of Technology (UTAUT) model to identify the factors that are significant in explaining the behaviour of the students in using the system. Their study suggests that performance expectancy, effort expectancy, and social influence are significantly related with intention of students to use system. Also, finds that facilitating conditions have significant relation with final system usage. They used 172 responses and adopted SEM to build the model.

Lee et.al. (2005) investigates students' acceptance of an internet-based learning medium (ILM) and their results show that perceived usefulness and perceived enjoyment are significantly related to attitude to use ILM. Whereas perceived ease of use is not significantly related with attitude to use ILM. In this study, they have considered 544 students and use SEM to build the model.

Liu et.al. (2005) combines the TAM theory and the Flow theory to give out an integrated theoretical framework for behaviour of the users of web-based streaming e-learning. Students of MIS department was the target population and 102 final responses were considered to build the model. The study finds that concentration has a positive correlation with their intention to use technology. E-learning materials like text-audio, audio-video, text-audio-video are used as external variables, linked to perceived usefulness and concentration. They prove that these materials have significant impact on perceived usefulness and concentration. The study suggests that individuals has to be seen as not only as users of e-learning but also as leaners of e-learning.

Saade and Bahli (2005) examines the impact of cognitive absorption (CA) on perceived usefulness (PU) and perceived ease of use (PEU). A sample of 102 students has been used to test the model and Partial least squares was used to build the model. The study proved that CA is an important antecedent to PU but less important to PEU.

Ifinedo (2006) considers two external constructs: technology and user characteristics, to extend the TAM theory. Their study proves that both the technology characteristics and user characteristics are significantly related to PU and PEU. Also, PEU significantly affects usage while PU did not show significance. Further, the study proves that both usage and PU influence continuance intention, PEU do not influence. Responses were collected from 72 students and Partial least squares is used to build the model. Interesting part of the study is it considers continuance intention of the we-based learning along with other constructs.

Lee (2006) makes an attempt to find the factors affecting the adoption of the e-learning system (ELS) under mandatory and voluntary settings. The study uses extended TAM for this. A sample of 1,085 students were considered and SEM was used to build the model. The factors considered in the model are: Content quality, Perceived network externality, Computer self-efficacy, Course attributes, Subjective norm, Perceived usefulness, Perceived ease of use, and competing behavioural intention. The study has found that content quality has significant relation with perceived usefulness, computer efficacy has a

significant relation with perceived ease of use, course attributes has a significant relation with perceived usefulness, perceived network externality has a significant relation with perceived usefulness and perceived ease of use, and competing behavioural intention has no significant relation with actual behaviour. Similarly, perceived usefulness has a significant relation with behavioural intention, perceived ease of use has a significant relation with behavioural intention, subjective norm has a significant relation with perceived usefulness.

Jiinpo et.al. (2006) aims at proposing a theoretical framework to address the continuance issue. Their study first integrates computer self-efficacy and the expectation-confirmation model (ECM), second theorizes the causal relationship between the factors PU, confirmation, satisfaction, and information system continuance in the e-learning context. MIS major students are the respondents and a sample of 187 final responses were considered in the study. To test the model, they use path analysis. The results show that perceived usefulness has a significant relation with satisfaction and continuance intention. Similarly, confirmation and computer self-efficacy have significant relation with perceived usefulness, computer self-efficacy has a significant relation with satisfaction, confirmation has a significant relation with satisfaction.

Ong and Lai (2006) conducts a study to find the gender differences in perceptions and relationships among factors affecting e-learning acceptance. A sample of 67 female and 89 male employees are considered to test the hypotheses. Their study found that men's rating of computer self-efficacy, perceived usefulness, perceived ease of use, and behavioural intention to use e-learning are all higher than women. They also found that women were strongly influenced by perceptions of computer self-efficacy and ease of use. Similarly, men's usage decisions were more significantly influenced by their perception of usefulness of e-learning. The main suggestion is to consider factors of gender while developing and testing e-learning systems.

Roca et.al. (2006) proposes a decomposed technology acceptance model under which, perceived performance is decomposed into perceived quality and perceived usability. In the study, a sample of 172 responses have been considered and they found that user's continuance intention is determined by satisfaction, which in turn is jointly determined by perceived usefulness, information quality, confirmation, service quality, system quality, perceived ease of use and cognitive absorption.

Saadé and Kira (2006) studies the effect of factors Affect and Anxiety (alone and together) on perceptions of online learning system (OLS). The results suggest that Affect and Anxiety may exist simultaneously as two weights on each side of TAM scale. The respondents are students of MIS course where OLS is mandatory and a total of 114 students have participated in the survey. Partial least squares method was used for the assessment of the proposed model.

Pituch and Lee (2006) proposes and tests alternative models to identify the factors that make students use e-learning system. They integrate factors of TAM with system and participant characteristics. Responses were collected from 259 college students and SEM was used to build and test the model. The external factors considered include system functionality, interactivity, response, self-efficacy, internet experience, and use for supplementary learning.

Fong-Ling et.al. (2007) uses an extended TAM to study the motivation, attitude and acceptance of e-learning, by the participants. They include factors: system functionality, interface design, pedagogic and contents, and community. Perceived enjoyment was included as an additional factor to the model. The analysis indicated that extended TAM explains the acceptability of online learning systems and perceived usefulness, ease of use, and enjoyment are good predictors of attitude and acceptance. Also, show that pedagogic, community, and content are significant external factors that explain the behaviour of the users of e-learning. A sample of 451 students were considered for the study and use SEM to build and

test the model.

Chang and Tung (2007) combines the innovation diffusion theory and the technology acceptance model. They add two research variables, perceived system quality and computer self-efficacy to propose a new model. They found that compatibility, perceived usefulness, perceived ease of use, perceived system quality and computer self-efficacy were critical factors for students' behavioural intentions to use online learning. A sample of 212 students were considered and SEM was used.

Jung-Wen (2007) aim at proposing a new construct, perceived control to the model and examine the role of the same in acceptance of e-learning by the employees. The proposed model is tested using SEM, with a sample of 206 employees. The study proves that perceived control has a significant relation with perceived usefulness and behavioural intention to use. Similarly, proves that computer self-efficacy is significant with perceived ease of use, perceived usefulness, and perceived control.

Davis and Wong (2007) conceptualizes and measures the e-learners experience from two integrated perspectives. The first one looks at the learners' affective perceptions using the flow model and TAM. They propose that learners' acceptance and the affective responses towards a particular system are two important factors in determining their intentional and actual behaviours, which in turn, influence user participation and engagement with the system. Responses were collected from 964 students and used SEM for model building. They found that subjective norm is significant with PU, job relevance is significant with PU, PEOU is significant with PU and Intention to use, PU is significant with intention to use, intention to use is significant with actual usage, Skill/perceived control is significant with experience of flow, challenge/arousal is significant with experience of flow, experience of flow is significant with ease of use and intention to use, experience of flow is significant with positive affect and exploratory behaviour, focused attention is significant with telepresence/time distortion, involvement is significant with focused attention, interactive speed is significant with flow, telepresence/time distortion, and focused attention, and telepresence/time distortion is significant with usage behaviour.

Hussien et.al. (2007) investigates the significance of computer self-efficacy, convenience, instructor's characteristics, instructional design, technological factors, and instructor's support. They use these factors as external factors for TAM. A sample of 147 responses were used in building the model and SEM is used to build the model. They found that, instructional design and technological factors were shown to be strong predictors of both perceived ease of use and perceived usefulness. Computer selfefficacy is significant in predicting perceived usefulness, convenience and instructor's characteristics are found to be non-significant factors for perceived ease of use. Perceived ease of use is found to be a strong predictor of perceived usefulness and intention to use.

Chiu et.al. (2007) integrates information system (IS) model and fairness theory to construct a model for identifying the motivations behind learners' intentions to continue using web-based learning. They theorize that three dimensions of quality (information, system, and service) and the three dimensions of fairness (distributive, procedural, and interactional) affect the learners' satisfaction. A sample of 289 learners was used to test the hypothesized model. The results show that information quality, system quality, system use, distributive fairness, and interactional fairness have significant relation with satisfaction. Similarly, procedural fairness and satisfaction have significant relation with learners' intention to continue using Web-based learning.

Chen et.al. (2007) makes an attempt to extend technology acceptance model and links perceived enjoyment and system features with perceived usefulness. Similarly, characteristics of teaching materials and self-efficacy are linked with perceived ease of use. A sample of 214 students were considered and partial least squares is used for building and testing the model. The results show that perceived

enjoyment and system features are significant with perceived usefulness, and characteristics of teaching materials and self-efficacy are significant with perceived ease of use.

Liaw et.al. (2007) studies the instructors and learners' attitudes towards e-learning usage. They consider 30 instructors and 168 students and asked them to answer questionnaires to investigate their perceptions. From the analysis they found that, instructors have a very positive perceptions towards e-learning as a teaching assisted tool. Similarly, self-paced, teacherled, and multimedia instruction are important factors that affect learners' attitudes.

Maslin (2007) investigates the relevance of TAM in usage of e-learning in Malaysia and finds that perceived ease of use has a significant relation with perceived usefulness and attitude to use e-learning, perceived usefulness has a significant relation with attitude to use e-learning and intention to use e-learning. A sample of 122 students were considered in the study and regression analysis was used to test the hypotheses.

Sun et.al. (2007) develops an integrated model with six dimensions: learners, instructors, courses, technology, design, and environment. A sample of 295 final responses were considered from the e-learners and stepwise multiple regression analysis. The results show that learner computer anxiety, instructor attitude towards e-learning, e-learning course flexibility, e-learning course quality, perceived usefulness, perceived ease of use and diversity in assessments are significant factors affecting the perceived satisfaction. They show how institutions have to improve learner satisfaction and further strengthen their e-learning implementation.

Roca and Gagné (2008) builds a model by including perceived autonomy support, perceived competence, perceived relatedness, perceived playfulness, to the factors of TAM. A sample of 166 complete responses were considered for building the model and SEM was used to test the model. The results show that perceived autonomy support is significant with

perceived usefulness and perceived playfulness. Perceived competence is significantly related with perceived usefulness, perceived ease of use, and perceived playfulness. Similarly, perceived relatedness is significantly related with perceived usefulness and perceived playfulness. Perceived playfulness is significantly related with perceived usefulness, perceived ease of use and E-learning continuance intention.

Park et.al. (2008) examines the factors that influence instructors' adoption and use of internet-based learning system. A sample of 191 instructors were considered and multiple linear regression was used to test the hypotheses. They found that Motivation has a significant impact on perceived ease of use, perceived usefulness, and evaluation of functions. Similarly, compliance with school policy has a significant impact on evaluation of functions and behavioural intention to use the system, Instructional technology has a significant impact on evaluation of functions, and evaluation of functions has a significant relation with current system use.

Hsia and Tseng (2008) combines perceived flexibility and computer self-efficacy with the TAM, for explaining the employees' decision to accept elearning. A sample of 233 employees are considered and SEM was used to build and test the model. The results show that computer self-efficacy is significantly related with perceived ease of use, perceived usefulness and perceived flexibility. Similarly, perceived flexibility is significantly related with perceived usefulness and behavioural intention to use.

Tobing et.al. (2008) has conducted a study to get more experience about the acceptance of Adaptive elearning system (AEL system) and integrated system adaptability to TAM. A sample of 314 students were considered to build the model and found that system adaptability is significant with perceived usefulness and perceived ease of use. Regression analysis is used to test the hypotheses.

Allan and Will (2008) studies teachers' acceptance of e-learning and builds a model to understand their

acceptance of e-learning technology. A sample of 152 teachers were considered to build the model and LISREL was used for data analysis. They made an attempt to include five constructs: intention to use, perceived usefulness, perceived ease of use, subjective norm, and computer self-efficacy. It was found that subjective norm and computer self-efficacy as two significant constructs of PU and PEOU. Similarly, PU is was not significant with intention to use, PEOU is significant with intention to use.

Sheng et.al. (2008) studies the TAM with respect to online learning system and extends by including an intrinsic motivational factor. A sample of 121 usable responses were considered to build the model and partial least squares was used to building and testing the model. From the analysis, they found that PEOU is significantly related with PU, PU significantly related with behavioural intention, enjoyment is significantly related with behavioural intention, and PEOU is significantly related with behavioural intention.

Antonio et.al. (2008) studies the influence of gender and previous experience as determinants of technology and proposes a modified TAM. They use SEM to explain the impact of perceived computer self-efficacy on the intention to use internet-based e-collaboration. A sample of 225 management students were considered for the study. Interestingly their study suggests that management students cannot be considered as advanced user of internet. Computer self-efficacy has a positive impact on PEOU, do not have a significant impact on intention to use.

Jaflah and Hamad (2008) investigates the factors affecting the acceptance and use of e-learning system at the University of Bahrain. They build an extended TAM by including three factors: computer self-efficacy, content quality, and subjective norms. A sample of 155 final questionnaires were considered for the study and correlation analysis for analysing the data. Interestingly the study considers content quality, computer self-efficacy, and other factors of TAM are considered in building the model. Along with this, the study considers power distance, Individualism vs

Collectivism, Uncertainty avoidance, Masculinity vs feminism, and Long-term orientation. The analysis has proven that PEOU is significant with PU, PU is significant with behavioural intention, PEOU is significant with behavioural intention, subjective norms is significantly related with behavioural intention, content quality is significant with PU, content quality is significant with PEOU, computer self-efficacy is significant with PU and PEOU, Individualism vs collectivism is significant with behavioural intention, power distance is significant with behavioural intention, uncertainty avoidance is significant with behavioural intention, masculinity vs feminism is significant with behavioural intention, and long term vs short term is significant with behavioural intention.

Masoud et.al. (2008) proposes a model to identify the factors that can be used to predict the acceptance of e-learning. Results demonstrate that there exists positive relationship between students' intention to use e-learning and its perceived usefulness, internet experience, computer self-efficacy, and affect. Also, computer anxiety and age have negative relationship with students' intention to use e-learning.

Liao and Lu (2008) considers antecedents of perceived characteristics of innovating (PCI) and antecedents of TAM and investigates that same in the context of elearning. Experimental results show that PCI factors explain more variance in users' intention of continued use than TAM antecedents. PCI factors include ease of use, compatibility, image, and result demonstrability. Among these, compatibility is significantly related with intention to continued usage.

Tseng and Hsia (2008) integrates internal locus of control (ILOC) and computer self-efficacy with TAM and attempts to explain employees' decisions to accept e-learning system. A sample of 204 employees were considered and SEM was used to build and test the model. The analysis shows that ILOC is significantly related with perceived usefulness and perceived ease of use, computer self-efficacy is significantly related with perceived ease of use and behavioural intention to use.

Liao and Lu (2008) attempts to build a TAM and findings indicate that perceptions of relative advantage and compatibility are significantly related to users' intention to use e-learning. They consider two sets of samples, one with prior e-learning experience and two without prior e-learning experience. For the model with prior e-learning experience, compatibility and result demonstrability are significantly related with intentions of continued use. For the model without prior e-learning experience, compatibility and relative advantage are significantly related with intentions of adoption. Their findings help one to understand the e-learning users better.

Lee (2008) examines perceptions of adequate resources on students' adoption of online learning system. Their model extends TAM by including the perspectives of intra and extra-organizational factors in the aspect of perceived resources. The results show that perceived usefulness and ease of use are positively associated with behavioural intention. Among the intra-organizational factors, internal computing support and internal computing training are significantly related with perceived usefulness and perceived ease of use. Similarly, among the extraorganizational factors, external computing support is significantly related with perceived usefulness and perceived ease of use, external computing training and external equipment accessibility are significantly related with perceived ease of use.

Lee et.al. (2009) proposes a model, based on flow theory, service quality, and TAM, that consists of four independent variables (instructor characteristics, teaching materials, design of learning contents, and playfulness), two belief variables (perceived usefulness and perceived ease of use), and one dependent variable (intention to use e-learning). A sample of 250 responses from students were collected, who had attended at least one e-learning class and SEM was used to build the model. The results show that instructor characteristics is significantly related with perceived usefulness, teaching materials are related with perceived usefulness, design of learning contents is related with perceived ease of use.

Park (2009) develops a general structural model that includes e-learning self-efficacy, subjective norm, system accessibility, perceived usefulness, perceived ease of use, attitude, and behavioural intention to use e-learning. A sample of 628 students were selected for the study and SEM was used to build the model. The results show that TAM was a good model to understand the users' acceptance of e-learning. Also, e-learning self-efficacy was most important construct, followed by subjective norm.

Wang and Wang (2009) develops an integrated model that integrates instructor adoption of web-based learning systems by incorporating existing literature and multiple empirically verified theories, including the technology acceptance model and DeLone and McLean's information system success model. A sample of 268 instructors were considered and SEM was used to build the model. The final model has information quality, system quality, service quality, subjective norm, and self-efficacy, along with constructs of TAM. Analysis show that information quality is significant with PEOU, and service quality is significant with PEOU. Also, subjective norm is significant with PU and intention to use, self-efficacy is significant with PEOU.

Akram and Sona (2009) extends TAM by including subjective norm, personal innovativeness in domain of information technology and computer self-efficacy. A sample of 155 students were considered and SEM was used to build the model. The results show that personal innovativeness in domain of information technology has a direct effect on self-efficacy. Both personal innovativeness and self-efficacy have direct effect on perceived ease of use. Perceived usefulness has a direct effect on intention of students to accept e-learning system.

Muneer and David (2009) investigates and tries to identify factors affecting students' adoption of elearning system. An extended TAM was developed to find the factors. A sample of 470 students who were using Moodle based e-learning system were considered and SEM was used to build the model.

The model has subjective norms, internet experience, system interactivity, self-efficacy, technical support, along with factors of TAM. The analysis shows that self-efficacy is significantly related with PEOU, Prior internet experience is significantly related with PEOU, subjective norm is significant with PU and intention to use, system interactivity is not significant with the TAM factors.

Cho et.al. (2009) proposes a theoretical model to assess impact of perceived user-interface design (PUID) on continued usage intention (CUI). The proposed model has perceived functionality (PF), perceived system support (PSS), and user satisfaction (USat). A sample of 100 students were considered and SEM was used to build the model. The results show that PF is significantly related with PU, PUID is significantly related with PEOU, PSS is significantly related with CUI, and PU is significantly related with CUI. Among the demographics, prior experience is significantly related with CUI.

Sørebø et.al. (2009) proposes to build an extended model in the context of teachers' utilization of elearning in connection with on-site courses. In this model they consider perceived autonomy, perceived competence, perceived relatedness, confirmation, intrinsic motivation, satisfaction, and PU as predictors of intention to continue. A sample of 124 teachers was considered and SEM was used to build the model. The results show that perceived autonomy is significantly related with intrinsic motivation, perceived competence is significantly related with confirmation, and PU, PU is significantly related with satisfaction and intention to continue, confirmation is significantly related with PU.

Duan et.al. (2010) conducts a survey amongst the Chinese students' intention of taking up e-learning. They consider relative advantage in facilitating learning process, relative advantage in enhancing learning outcome, compatibility, complexity, trialability, observability as predictors of intention to take up e-learning study. Among these, compatibility and trialability is significantly related with intention

to take up e-learning study.

Abdulhameed et.al. (2010) extends TAM by including enjoyment, computer anxiety, computer self-efficacy, and internet experience as predictors for studying the students' intention to use e-learning. A sample of 402 students were considered to build the model and used regression analysis to test the hypotheses. The results indicate that computer anxiety, computer self-efficacy, and enjoyment were significantly related with students' intention to use e-learning.

Lee (2010) attempts to synthesize the expectation-confirmation model (ECM), TAM, theory of planned behaviour (TPB), and flow theory to build a model to explain the users' intention to continue using elearning. A sample of 363 learners of web-based learning program were considered for the study and SEM was used to build and test the model. From the analysis, one can note that confirmation is significantly related with satisfaction and PU, PU is significantly related with satisfaction, attitude, continued intention. Perceived enjoyment is significantly related with attitude and continued intention, concentration is significantly related with continued intention. Also, subjective norm and perceived behavioural control are significantly related with continued intention.

Liu et.al. (2010) takes TAM as foundation and extends the same by including the external variables and few perceived variables. A sample of 436 students were considered for the study and SEM was used to build and test the model. External variables considered areonline course design, user interface design, pervious online learning experience. Perceived interaction (PINT) was considered as perception variable. The analysis shows that online course design is significantly related with PU, PEOU, and PINT. User interface design is significantly related with PEOU, and PINT, and previous online learning experience is significantly related with PU, PEOU, Intention to use an online learning community, and PINT is significantly related with Intention to use an online learning community.

Jorge et.al. (2010) studies the influence of gender on

adoption of technology among higher education students. The proposed model has PU, PEOU, Result demonstrability (RES), Perception of external control (PCE), and Perceived enjoyment (PENJ). A sample of 189 students were considered and, Partial least squares and ANOVA were used to test the proposed hypotheses. The results show that RES is significantly related with PU, PCE and PENJ were significantly related with PEOU. Also, show that there exists no significant difference between male and female when adopting e-leaning platform.

Chen (2010) links the overall job outcomes with elearning related factors. The proposed model has information quality, system quality, PU, user satisfaction, and Overall job outcome. A sample of 193 employees was considered and partial least squares was used to build and test the model. Analysis show that information quality is significantly related with PU, system quality is significantly related with PU and PEOU. Also, usage of e-learning systems has a significant impact on overall job outcome.

Ahmad and Samar (2010) tries to link few external factors and TAM factors and study the influence of the same on students e-retention. They consider design features, enjoyment, PU PEOU as independent variables, e-satisfaction as mediating variable, and e-retention as dependent variable. A sample of 340 complete responses were used in the study and SEM was used to build and test the model. The results show that PU, BDF, ENJ are significantly related with e-retention, and e-satisfaction is significantly related with e-retention.

Lee et.al. (2011) examines the factors that influence employees' adoption and use of e-learning systems. They study the relationship of employees' perceptions on using e-learning systems in terms of four determinants- individual, organizational, task characteristics, and subjective norm. A sample of 357 employees were considered and SEM was used to build and test the model. They consider organizational support (OS), management support (MS), individual's

experience with computers (IEC), computer self-efficacy (CSE), task interdependence (TI), and task equivocality (TE) as external factors. TAM factors include PU, PEOU and Subjective norm. Analysis show that OS is significantly related with PU and SN. Similarly, MS is related with SN and PEU, IEC is related with PEU, CSE is related with PEU, SN is related with PU and PEU. Also, PU and PEU are significantly related with behavioural intention.

Veera (2011) proposes to extend TAM by introducing CSE, system functionality (SF), and Teaching materials (TM). A sample of 207 students have been considered for the study and SEM was used to build the model. Analysis shows that CSE, SF, and TM have positive effect with PEOU, TM has positive effect with PU. PU is positively linked with intention to use, and PEOU is positively linked with PU.

Yan li et.al. (2011) tries to integrate TAM and selfefficacy theory and develop a theoretical framework to investigate learners' behavioural intention to reuse e-learning systems. A sample of size 280 e-learners were considered for the study and SEM was used to build and test the model. The model is built by considering factors-system functionality, system response, system interactivity as predictors for PU and PEOU. Similarly, service quality, course quality, selfefficacy, PU, and PEOU as predictors of behavioural intention to re-use. Analysis show that system functionality is significantly related with PU and PEOU, system response is significantly related with PU and PEOU, system interactivity is related with PEOU. Also, service quality, course quality, PU, PEOU, and selfefficacy are significantly related with behavioural intention to reuse.

Cheng (2011) builds an extended TAM for identifying the antecedents and consequences for employees' acceptance of the e-learning system with financial services organizations. A sample of 328 employees were considered and SEM was used to build and test the model. The study links several factors to build extended TAM. The factors considered as network externality factor, social factors (interpersonal influence,

external influence), system factors (system functionality, system interactivity, system response, and content quality) and individual factors (computer self-efficacy, internet self-efficacy, cognitive absorption, and learning goal orientation) as predictors for PU, PEOU, and perceived enjoyment.

Lin (2011) explores the factors impacting the e-learning continuance intention of users with different levels of e-learning experience and examines moderating effects of e-learning experience on the relationships among the factors. A sample of 256 users were used in the study and SEM was used to build and test the model. The factors considered are- Negative critical incidents (NCI), Quality attributes cumulative satisfaction (QAS), PU, and PEOU as predictors. From the analysis, one can note that NCI is significantly related with QAS and PU. Also, PEOU is significantly related with PU and attitude to use e-learning. PU is related with attitude and, QAS and attitude are significantly related with continuance intention (CI).

Karaali et.al. (2011) aims at extending the TAM by including the factors that are significant in explaining the decision on using a web-based learning system among blue-collar workers in the automotive industry. A sample of 546 blue-collar workers were considered in the study and SEM was used to build and test the model. The model includes factors-social influence, facilitating conditions, anxiety as external factors. From the analysis one can note that, social influence is significantly related with PU and Behavioural intention, facilitating conditions and anxiety are significantly related with PEOU.

Soud and Fisal (2011) investigate empirically the relationships between system quality, information quality, service quality, internet self-efficacy, PU, intrinsic user satisfaction, and continuous intention to use e-learning system. Demographic variables are considered as moderating variables, continuance intention is the dependent variable. A sample of 186 responses were considered for the study and multiple regression was used to test the hypotheses. The results indicate that there exists positive relationship between

system quality, information quality, service quality, internet self-efficacy, perceived usefulness, intrinsic, and user satisfaction. Also, there exists positive correlation between system quality, information quality, service quality, internet self-efficacy, perceived usefulness, intrinsic, user satisfaction, and continuous intention to use e-learning system. Finally, the results suggest that there is no difference in the evaluation of continuous intention to use e-learning systems by research respondents in terms of demographic variables such as, gender, age, and level of education.

Basheer Ibrahim (2011) aims at studying the attitudes of lecturers towards adoption of e-learning system and finds that there exists positive relationship between PU, PEOU, computer knowledge, management support, and intention to adopt. Also, there exists negative relationship between normative pressure, computer anxiety and intention to adopt. A sample of 799 academicians were considered for the study and SEM was used to build and test the model.

Alfie (2012) aims at identifying the predominant factors that determine intention of students to use elearning. The study considered 5 categories of variables-individual differences, beliefs, attitudes, behavioural intention, and actual behaviour. A sample of 249 usable responses taken from students were considered and SEM was used to build and test the model. Results show that PU, SN, PEOU are significant predictors of behavioural intention.

Hsia et.al. (2012) integrates locus of control, computer self-efficacy, and TAM and builds an extended TAM to explain the behaviour of employees of high-tech companies towards acceptance of e-learning systems. A sample of 233 employees was considered and SEM was used to build and test the model. The results indicate that locus of control has a significant relation with PU and PEOU. PU, PEOU and computer self-efficacy are significant with behavioural intention. Also, computer self-efficacy is significant with behavioural intention.

Cheng (2012) examines the effect of quality factors on the learners' intention to use an e-learning system. A sample of 483 usable responses were used and SEM was used to build and test the model. The study considers information quality, system quality, service quality, instructor quality as quality factors. Further, information quality is divided into two components-course content quality and course design quality. Service quality is measured with support service quality, system quality is divided into 4 components-system functionality, system interactivity, system response, and user-interface design. Instructor quality is measured as instructor attitude toward e-learners.

Abdulhameed (2012) extends TAM to investigate the effect of system performance (SP), system functionality (SF), system response (SR), and system interactivity (SI) on students' acceptance of E-learning. A sample of 408 responses were used in the study and stepwise regression analysis was used to test the hypotheses. Analysis show that SR, SF and SI are significant with e-learning acceptance and SP found to be insignificant with e-learning acceptance.

Purnomo and Lee (2012) tries to extend the TAM in the context of e-learning acceptance in banking workplace, by including computer self-efficacy, prior experience, computer anxiety, management support, and compatibility. A sample of 306 responses were considered and SEM was used for building and testing the model. Results show that Management support is significantly related with PU and PEOU, Prior experience is significantly related with PU and PEOU, computer anxiety is significantly related with PU, perceived compatibility is significantly related with PU and PEOU. Finally, PU is significantly related with behavioural intention to use.

Chen and Tseng (2012) considers teachers and investigate their perspective on using e-learning in in-service education. A sample of 402 junior high school teachers in central Taiwan were considered as respondents and SEM was used for building the model and testing it. The factors considered include Motivation to use (MU), Computer anxiety (CA), Internet self-efficacy (ISE), PU, PEOU. The results show that MU is significantly related with PU and PEOU, CA

is significantly related with PEOU, ISE is significantly related with PU and PEOU. Finally, PEOU is significantly related with PU, PU and PEOU are significantly related with Behavioural intention.

Park et.al. (2012) considers professionals from construction industry and tries to build an extended TAM to study the factors that affect the successful implementation of a web-based training. A sample of 408 construction professionals were considered and SEM was used to build and test the model. The factors considered are enjoyment (ENJ), computer anxiety (CAX), social influence (SI), organizational support (OS), information quality (IQ), system quality (SQ) as external factors along with the TAM factors. The analysis show that PU is significantly related with user satisfaction (US), PEOU is significantly related with US, PEOU is significantly related with PU, US is significantly related with transfer of training (TT). Similarly, ENJ is significantly related with PU, CAX is significantly related with PU and PEOU, SI is significantly related with PU, OS is related with PEOU, IQ is related with PU, and SQ is related with PEOU.

Alexander et.al. (2012) investigates the association with particular learning style and perceived usefulness of e-learning. A sample of 953 students were considered for this purpose and regression analysis was used to test the hypotheses. Findings show that individuals' learning style and gender have significant effect on perceived usefulness.

Ramayah et.al. (2012) tries to find the factors that are significant for the adoption of e-learning among the students of universities in Malaysia. The study considers information quality, system quality, system quality as predictors of user satisfaction. A sample of 250 students were considered and SEM was used to build and test the model. Results show that system quality, information quality, service quality are significantly related with user satisfaction. Also, system quality is positively related with intention to use, service quality is positively related with intention to use, and user satisfaction is positively related with usage continuance.

Lin and Chen (2012) integrates TAM and ISM to identify the factors that makes one choose e-learning system (ELS). They introduce system quality (SQ), platform information quality (PIQ), and course information quality (CIQ) as antecedents of perceived usefulness and perceived ease of use. Satisfaction to ELS (SES) was introduced as a factor to predict continuance intention (CI) and PU and PEOU are taken as antecedents to SES. A sample of 412 students were considered and SEM was used to build and test the model. Analysis show that PU, SES are significantly related with CI, PU and PEOU are significantly related with SES, PEOU is significantly related with PU, and SQ is related with PEOU. Also, CIQ and PIQ are significantly related with PU and PIQ is related with PEOU.

Ali et.al. (2013) extends TAM by including social norms and quality of work life (QWL) constructs. A sample of 569 undergraduate and Postgraduate students were considered and SEM was used to build and test the model. The analysis show that PU, PEOU, social norms and QWL are significantly related to students' behavioural intention to use e-learning.

Lee et.al. (2013) applied TAM to study the attitude of the employees and acceptance of e-learning systems in the organizations. They consider organizational support (OS), computer self-efficacy (CSE), prior experience (PE), and task equivocality (TE) as external factors to PU and PEOU. A sample of 332 employees were considered and SEM was used to build and test the model. Analysis show that OS is significantly related with PU and PEOU, CSE is significantly related with PU and PEOU, and TE significantly related with PU. Also, PU is significantly related with behavioural intention (BI), PEOU is related with PU and attitude, and attitude with BI.

Rym et.al. (2013) proposes a model to identify the determinants of accepting e-learning by Tunisian Post office employees. A sample of 200 employees were considered and SEM was used to build the model and test the same. The study considers social factors

(interpersonal influence (INI), external influence (EXI)), system factors (content quality (CQ)), organizational factors (technical assistance (TA)), and individual factors (NTIC self-efficacy (NTICSE)). Analysis shows that TA is significantly related with PEOU, NTICSE is related with PEOU, CQ is related with PU, EXI is related with PU, PEOU is related with PU, PU is related with ATU, PEOU is related with ATU, ATU is related with ITU, and EXI is related with ITU.

Nabeel (2013) conducts a study to identify the determinants of students' acceptance of e-learning in higher education. The study considers university support and computer self-efficacy as external factors of PU and PEOU. A sample of 224 students were considered in the study and regression analysis was used to test the hypotheses. The analysis shows that university support and computer self-efficacy is significantly related with PU and PEOU. Also, PU is significantly related with PU, attitude towards using e-learning, and behavioural intention to use e-learning. Similarly, PEOU is significantly related with PU and attitude towards using e-learning.

Amer et.al. (2013) considers students of Jordanian Universities and attempts to identify the factors that motivate them to use e-learning systems. A sample of 107 students were considered for the students and regression analysis was used to test the hypotheses. The analysis shows that PU is significantly related with intention to use e-learning system, PEOU is significantly related with PU, PEOU is related with attitude to sue e-learning system.

Sánchez et.al. (2013) considers students of University of Huelva and attempts to identify the factors lead to acceptance of WebCT learning system. A sample of 226 students were considered for the study and SEM was used to build and test the model. The study considers technical support as an antecedent of computer self-efficacy and computer self-efficacy is considered as an antecedent to PU and PEOU. Among the factors, technical support has a significant relation with attitude, PEOU is significantly related with attitude, and PU. Also, attitude has significant relation with system usage.

Cheng (2013) conducts a study to explore the relation between intrinsic factor (flow), extrinsic factors (PU, PEOU) and usage of e-learning amongst the nurses. A sample of 218 responses were considered and SEM was used to build and test the model. The study considers learner-system interaction, instructor-learner interaction, and learner-learner interaction as antecedents of PU, flow, and PEOU. Results show that learner-system interaction, instructor-learner interaction, and learner-learner interaction are significantly related with PU, PEOU, and flow. Also, flow had significant relation with PU and PEOU, and PEOU had a significant relation with PU. Finally, flow, PU, and PEOU have significant relation with intention to use.

Ali et.al. (2013) considers students from developing country like Lebanon and conducts the study to extend TAM to include two constructs social norms and quality of work life. A sample of 569 students were considered in the study and uses SEM for building and testing the model. Results show that quality of work life, social norm, PU, and PEOU are significantly related with behavioural intention to use e-learning system. Also, behavioural intention has significant relation with attitude to use.

Motaghian et.al. (2013) conducts a research to build a model to identify the factors affecting university instructors' adoption of web-based learning systems. A sample of size 115 university instructors were considered in the study and SEM was used to build and test the model. Their research show that PU, PEOU, and system quality increase instructors' intention to use web-based learning systems. Also, they show that PU is the most important factor affecting the intention and actual use the system.

Mazen et.al. (2013) conducts a study to identify the factors contributing to attitude towards E-learning in higher education among the students. The study develops a TAM-EL model for predicting the intention to adopt e-learning using the factors of the model. A sample of 380 undergraduate students were considered for the study. The study considers PU,

PEOU, patronise (degree of support) and practiced (previous use) as predictors of attitude towards using the system. Analysis shows that PU, PEOU are significantly related with practiced (previous use). Patronised (degree of support) is significantly related with PU and PEOU. Also, practiced is significantly related with attitude towards the usage of system.

Cheung and Vogel (2013) attempts to extend the TAM for e-learning and identify the factors that influence the acceptance of Google applications acceptance model. A sample of 136 students were considered for the study and SEM was used to build and test the model. The study considers perceived resource, compatibility, sharing, subjective norm (peer, media, lecturer), self-efficacy, PU, PEOU as antecedents of attitude, and behavioural intention. Analysis show that perceived resource and compatibility is significantly related with PEOU, compatibility is related with attitude, sharing is related with PU and attitude, subjective norm-peer is related with behavioural intention, and self-efficacy is related with behavioural intention. Also, sharing and behavioural intention are significantly related with system usage.

Tabak and Nguyen (2013) proposes a conceptual model that integrates TAM with self-regulation taken from social cognitive theory. The study considers intrinsic factors (consciousness, openness, general self-efficacy, and risk propensity), extrinsic factors (technical support, technology training, equipment accessibility), self-reflection (self-adjustment, self-reaction), forethought (self-motivation and task analysis), and performance (self-control, self-observation) as factors of the model.

Ali et.al. (2013) extends TAM by including social, institutional and individual factors. A sample of 604 students were considered for the study and SEM was used to build and test the model. The study considers the factors PU, PEOU, social norms (SN), quality of work life (QWL), as antecedents to behavioural intention (BI) and self-efficacy (SE), and facilitating conditions (FC) as antecedents to attitude to use (AU) the web-based system. The analysis shows that PU,

PEOU, SN, and QWL are significant factors of BI, SE and FC are significantly related with AU.

Calisir et.al (2014) considers blue-collar workers and aims at identifying the factors that affect their intention to use the web-based learning system in the automotive industry. The extend TAM by including factors such as anxiety, image, perceived content quality, and perceived system quality. A sample of 546 blue-collar workers was used SEM to build and test the model. Analysis shows that perceived content quality is significantly related with PU, perceived system quality and anxiety are significantly related with PEOU, PU is related with attitude to use and BI, PEOU is related with AU.

Richard et.al. (2014) adopts TAM and attempts to identify the factors that motivate the students to choose e-learning systems. A sample of 423 students were considered and SEM was used to build and test the model. The results show that perceived enjoyment (PENJ), social influence and computer self-efficacy are significantly related with PU, PENJ and computer self-efficacy are related with PEOU, satisfaction is related with system usage.

Lee et.al. (2014) proposes a model that includes five characteristics of TAM and tries to find the significant factors that motivate students to use e-learning. They consider factors such as computer self-efficacy, internet elf-efficacy, instructor attitude toward students, learning content, and technology accessibility. A sample of 326 students were considered and SEM was used to build and test the model. The results show that computer self-efficacy is significantly related with PEOU, internet self-efficacy is related with PU, learning content is related with PU and PEOU, and technology accessibility is related with PEOU. Also, PU and PEOU is related with PU.

Tan and Shao (2014) considers a model that takes into consideration the characteristics related to information and technology related to e-learning. Many studies have considered user characteristics and attempted to identify the factors that motivate the users

of e-learning system. This is one study that considers the characteristics related to information and technology. They consider factors such as subjective norm, image, job relevance, output quality, result demonstrability, user friendliness, user training, and environment support, as predictors of the TAM factors. Analysis show that subjective norm and output quality are significantly related with PU, user friendliness and environment support are significantly related with PEOU. Also, PU and PEOU are related with BI, PEOU is related with PU.

Agudo-Peregrina et.al. (2014) proposes a TAM3 based model by including two additional variables: personal innovativeness and perceived interaction, to study the factors influencing the acceptance of e-learning systems. The study considers factors such as relevance for learning, perceived interaction, subjective norm, self-efficacy, computer anxiety, personal innovativeness, perceived playfulness, facilitating conditions, and self-reported habit. A sample of 81 students were considered and SEM was used to build and test the model. The analysis shows that relevance for learning is significantly related with PU and perceived usefulness (flexibility) and PEOU, perceived interaction is related with PU, subjective norm is related with PU and BI, compute anxiety and playfulness is related with PEOU, facilitating conditions is related with PEOU.

Wu and Zhang (2014) proposes a model that integrates TAM, information system success (ISS) model and social motivation theories to identify the factors that motivate students to continue to use elearning system. A sample of 284 participants from the companies in China that have already implemented E-learning in their companies and SEM was used to build and test the model. The study includes factors such as system reliability, system accessibility, information accuracy, information completeness, sociality, and altruism as predictors of the TAM factors. Analysis shows that system reliability is significantly related with PU and PEOU, system accessibility is related with PEOU, information accuracy is related with PU, information completeness is related

with PU, and Sociality is related with PU.

Ali et.al. (2014) aims at identifying the factors affecting the students' behavioural intention to adopt elearning technology and also study the moderating effect of age and gender on the relationships among the determinants affecting e-learning acceptance. A sample of 604 students who used a web-based learning system were considered and SEM was used to build and test the model. The study considers PU, PEOU, social norm, and self-efficacy as predictors of behavioural intention. The analysis shows that all the factors are significantly related with behavioural intention to use the e-learning system. Also, the study found that age is a significant moderator for PEOU, PU, and self-efficacy, gender is a significant moderator for PEOU, and SN.

Cheng (2014) conducts a longitudinal study to examine how the interactivity factors affect the learner's intention to use e-learning system. A sample of 225 students were considered for the study and SEM was used to build and test the model. The study considers factors such as controllability, responsiveness, two-way communication, and personalization as predictors (or extrinsic) of TAM factors. In the current study, perceived enjoyment is considered as an intrinsic factor. Analysis shows that all extrinsic factors have significant relation with PU, PEOU, and PE. Also, PU, PEOU, and PE have significant relation with intention to use e-learning.

Inma and Antoni (2014) investigates how senses of presence and flow, together with perceptions about two central elements of the virtual education environment (didactic resource quality and instructor attitude), facilitate the user's intention to continue elearning. The factors include resource quality and instructor attitude are considered as antecedents of PU, PEOU, Flow, and Presence. The analysis shows that AU is significantly related with continuance intention, PEOU is related with AU, PU is related with AU, PEOU is related with PU, resource quality is related with PEOU, and PU, instructor attitude is related with Flow, PU and resource quality, PEOU is related with Flow, resource quality is related

with academic performance, Flow is related with AU, resource quality is related with presence, instructor attitude is related with presence, presence is related with Flow, and presence is related with continuance intention.

Patricio et.al. (2015) considers two different universities, one in Chile and the other in Spain and studies the impact of gender on the adoption of elearning in the two universities. The study includes factors such as result demonstrability (RES), perceived enjoy (ENJ), perception of external control (PCE) as predictors of PU and PEOU. Also, PU and PEOU are predictors of BI. A sample of 230 students were considered from Spain and 159 students from Chile. The analysis shows that there is significant relation between BI and Usage of e-learning for male and female, ENJ is significantly related with PEOU for male but not for female, PCE is significantly related with PEOU for both male and female, PEOU is significantly related with BI for both male and female, and RES is significantly related with PU for both male and female. This motivates one to take up gender as a moderating factor while building the comprehensive model.

Kang and Shin (2015) propose to extend TAM for identifying the factors that motivate learners to choose e-learning system. They consider self-efficacy, systematic lecture content, subjective norm, system accessibility as antecedents to PU and PEOU. A sample of 251students were considered and SEM was used to build and test the model. Analysis show that self-efficacy is significantly related with BI, and PU, subjective norm is significantly related with PU and PEOU, and system accessibility is related with PEOU, and BI. Also, PEOU is related with BI.

Mohammadi (2015) attempts to integrate TAM and IS success model to identify the factors that motivate the e-learners to choose the e-learning system. A sample of 390 students were considered for the study and SEM, Path analysis were used to build and test the model. The factors considered include education quality, service quality, technical quality, information quality, PU, PEOU as predictors of the factor satisfaction and intention. Also, satisfaction and

intention are used to predict learning assistance and actual use. Analysis show that educational quality is significantly related with satisfaction, service quality is related with satisfaction and intention, system quality is related with satisfaction and intention, information quality is related with satisfaction and intention, PEOU is related with PU, PU and satisfaction are related with intention, satisfaction is related with actual use and learn assistance, intention is related with actual use, actual use is related with learn assistance.

Ho and Liu (2015) investigates users' choice of new e-learning system to old system. They use construal theory and TAM to identify the factors that motivate users choose e-learning system. A sample of 131 students were considered in the study and conducted an experiment to achieve the objectives of the study. Two levels of construal level are considered: high construal level and low construal level. Analysis show that PEOU is related with PU and attitude, PU is related with attitude, relative construal level acts significantly as a moderator between PEOU and PU. Also, attitude is significantly related with usage intention.

Abu-Shanab and Ababneh (2015) considers TAM and extends the same by considering job satisfaction and age as other factors along with PU and PEOU as predictors of intention to use e-learning. A sample of 104 faculty members were considered and regression analysis was used to test the hypotheses. Analysis shows that age and job satisfaction are not significant, PU and PEOU are significantly related with intention to use e-learning.

Ratna and Mehra (2015) considers TAM to identify the factors that motivate students to use e-learning. A sample of 116 students were considered and regression analysis was used to test the hypotheses. Analysis of the data shows that PU and PEOU were significantly related with attitude towards e-learning (ATT), PEOU is related with PU, ATT is related with BI, Bi is related with actual use of e-learning. Also, PU and PEOU are related with actual use of e-learning.

Nawaz et.al. (2015) studies the intentions of

schoolteachers towards usage of e-learning systems in Sri Lanka. The study uses PU, PEOU, social influence (SI), and facilitating conditions (FC). A sample of 367 teachers were considered and regression analysis was used to test the hypotheses. Analysis show that PU, PEOU, and FC are significantly related to attitude to usage of e-learning.

Willie and Herring (2015) adopts TAM to identify the factors that motivate the students in South Africa to choose e-learning. A sample of 113 students were considered and MANOVA is used to test the hypothesis. The study considers computer self-efficacy and gender as predictors of PU and PEOU. Results show that gender was found to be significant in building the model. Also, other factors of TAM are significant.

Richard et.al. (2016) attempts to identify the determinants of e-learning adoption among the students of University of Ghana. They consider a model that has computer self-efficacy as an important predictor of PU and PEOU. Analysis show that computer self-efficacy is significantly related with PEOU but not with PU.

Ahmed et.al. (2016) proposes a model that includes five constructs IT infrastructure services, system quality, information quality, service delivery quality, and perceived usefulness. A sample of 720 students who were enrolled for online courses, were considered for the study and SEM was used to build and test the model. Among the factors, service delivery quality (SDQ) is considered as a mediating factor. Analysis show that SDQ was not a significant mediating factor. Removing the same, the analysis shows that IT infrastructure services is significantly related with system quality, system quality is significantly related with information quality, IT infrastructure services is significantly related with information quality, system quality is related with PU, and information quality is related with PU.

Abdullah and Ward (2016) uses Meta-analysis to build an extended TAM to identify the factors that motivate users to choose e-learning. A total of 107 papers covering the 10 years were considered and results of the same were considered to build the extended TAM. The study considers self-efficacy, subjective norm, enjoyment, computer anxiety, and experience as external factors. The analysis show that self-efficacy is the most significant factor for PEOU. Other significant factors include, enjoyment, experience, computer anxiety, and subjective norm. For PU, the most significant factor is enjoyment, followed by subjective norm, self-efficacy and experience. It is an interesting study and a motivation for the current study, in either finding more external factors or finding strengths to the existing paths.

Said (2016) conducts a study to identify the factors that motivate the students to choose e-learning systems. Their study considers TAM3 and considers a sample of 286 students to achieve the objectives of the study. The factors considered include subjective norm, image, job relevance, output quality, result demonstrability, computer self-efficacy, perceptions of self-control, computer anxiety, computer playfulness, perceived enjoyment, and objective usability. SEM was used to build and test the model. Analysis shows that subjective norm, image, jobrelevance were significantly related with PU, computer self-efficacy, perceptions of external control, computer anxiety, and perceived enjoyment were significantly related with PEOU. Interestingly, the study finds that experience was a significant moderator between subjective norm and PU, between perceived enjoyment and PEOU, between PEOU and PU, between PEOU and intention to use. Also, subjective norm is significantly related with intention to use.

Moreno et.al. (2016) conducts a study to explain students' intention to use e-learning platforms effectively. Interestingly they study the intention of students to explore the system functionalities fully. A sample of 251 students were considered in the study SEM was used to build and test the model. They use factors such as system interactivity, social influences, output quality, cognitive absorption, self-efficacy, facilitating conditions, and prior experience as external factors. The analysis shows that system interactivity

cognitive absorption is significantly related with PU, and cognitive absorption, self-efficacy, and facilitating conditions are significantly related with PEOU.

Biswadip (2016) proposes a model as an integration of technology mediated learning (TML) and TAM. The proposed model has individual characteristics, TML system, perceived ease of use, perceived usefulness, facilitating conditions, learning outcomes as predictors of the factor "Usage". A sample of 139 users were considered for the study and SEM was used to build and test the model. The analysis shows that TML is significantly related with PEOU, PU and Usage. PEOU is related with PU, PU is related with Usage, Usage is related with learning outcomes, individual characteristics is related with PEOU, Usage, PU, learning outcomes, and facilitating conditions is related with PEOU.

Ramirez-Anormaliza et.al. (2016) builds a model to identify the factors that motivate teachers to use elearning systems. They consider a model that has factors such as social influence (SI), perceived enjoyment (PENJ), technical support (TS), computer self-efficacy (CSE), and satisfaction (S) as predictors of TAM factors. A sample of 131 teachers were considered for the study and SEM was used to build and test the model. The analysis shows that SI is significantly related with PU, PENJ is related with PU and PEOU, and CSE is related with PEOU.

Ali et.al. (2016) conducts a study that tests the significance of social media in explaining the factors of TAM in e-learning. A sample of 318 students and 182 teachers were considered for the study and SEM was used to build and test the model. The analysis shows that social media is significantly related with PU and PEOU.

Abbas (2016) conducts a study to propose a model that includes three social factors-interpersonal influence, external influence, and instructor influence. A sample of 468 students were considered in the study and SEM was used to build and test the model. The analysis shows that interpersonal influence is significantly related with PU, external influence is

related with PU, instructor influence is related with PU and PEOU.

Khanh (2016) conducts a study to identify the factors that determine the attitudes of learners towards a blended e-learning system (BELS). A sample of 396 students were included and SEM was used to build and test the model. The model considers system characteristics and individual differences as predictors of attitude and PEOU. System characteristics include system functionality and content feature. Sociocultural factors include language capability, interaction, learning climate. Individual differences include computer self-efficacy and personality traits. Personality traits include extraversion, openness, conscientiousness, agreeableness, and neuroticism. Analysis shows that system functionality, language capability, interaction, and extraversion are significantly related with PEOU, content feature and interaction are related with attitude. Also, PEOU is significantly related with attitude.

Nadia et.al. (2017) conducts a study to evaluate the relationship between technological aspects of elearning and PU. A sample of 306 students were considered for the study and SEM was used to build and test the model. The study considers-ease of access, level of interaction, service quality, system quality and internet quality ss predictors of PU of elearning. Analysis shows that ease of access, level of interaction, service quality, and internet quality have significant relation with PU.

Ibrahim et.al. (2017) conducts a study to identify the factors that are affecting the students' choice of elearning systems. They consider computer self-efficacy, course design, instructor characteristics as predictors of TAM factors. A sample of 95 students were considered for the study and SEM was used to build and test the model. The study identifies that computer self-efficacy is significantly related with PEOU, and PEOU is related with intention to use elearning.

Wilmar et.al. (2017) integrates theories of information systems' satisfaction and success in the e-learning

systems to build a model to identify the factors that motivate the students in Brazil to use e-learning systems. The factors include collaboration quality (CQ), service quality (SQ), information quality (IQ), system quality (SYsQ), learner computer anxiety (LCA), instructor attitude towards-learning (IATL), diversity in assessment (DA), learner perceived interaction with others (LPIO). A sample of 301 students were considered and the study identifies that CQ is related with use, IQ is related with use and user perceived satisfaction, SysQ is related with user perceived satisfaction and individual impact. Also, IATL, DA, LPIO are related with user perceived satisfaction.

Manuel (2017) aims at determining the factors that affect students' choice of e-learning technology acceptance, particularly on learning management systems (LMS). They extend TAM by including internet connectivity experience (ICE), social media influence (SMI), integrated multimedia instruction (IMI), system interactivity (SI) and perceived quality of work life (PQWL) as predictors. A sample of 629 students from Filipino were considered and SEM was used to analyse the data. Analysis show that ICE is significantly related with PEOU and BI, PU is related with BI, SMI is related with PU and BI, PEOU is related with PU and BI, SI is related with PU, and IMI is related with PEOU.

Chang et.al. (2017) considers the general extended TAM to identify the factors affecting the students' acceptance of e-learning systems. The study considers Subjective norm (SN), experience (EXP), enjoyment (ENJ), computer anxiety (CA), technological innovation (TI), and self-efficacy. A sample of 714 students were considered for the study and SEM was used to test the model. Analysis shows that SN is significantly related with BI and PU, EXP is related with PU and PEOU, ENJ is related with PU and PEOU, CA is related with PU and PEOU, and SE is related with PEOU. Also, PU and PEOU is related with BI. Another interesting result is TI is a significant moderator of SN and PU, and a significant moderator between PU and BI.

Zainab et.al. (2017) builds a model to find the role of perceived cost, self-efficacy, and the TAM in e-training

in the Nigerian civil service. A sample of 450 heads of the departments were considered in the study and SEM was used to build and test the model. They found that perceived cost is significantly related with etraining, and PU is related with e-training.

Faria and Mariam (2017) makes an attempt to identify the factors that motivate the students to adopt elearning systems in developing countries like Pakistan. A sample of 354 students enrolled at a Virtual University at Pakistan and SEM was used to build and test the model. The study considers computer self-efficacy (CSE), internet experience (IEXP), enjoyment (ENJ), computer anxiety (CA), organizational accessibility (ORGA), system characteristics (SCH), sand subjective norm as predictors of TAM. CSE, IEXP and ENJ are significantly related with PEOU, SCH is related with PU and PEOU, PU and PEOU are related with attitude and finally attitude is related with BI.

Maria et.al (2017) conducts a study to determine the factors that influence the students to choose elearning systems. A sample of 286 students were considered in the study and regression analysis was used to test the hypotheses. The study considers elearning usefulness, e-learn design, e-learning ease of use as predictors of attitude to use e-learning. The analysis shows that all the three factors are significantly related with attitude to use e-learning.

Willie et.al. (2017) conducts a study to identify the factors that influence students to choose e-learning system at a rural University in South Africa. A sample of 252 first year students were considered, and SEM was used to build and test the model. The study considers online course design, user interface design, pervious learning experience as external factors. PU, PEOU, and perceived interaction (PI) as internal factors. Analysis shows that PEOU is significantly related with PI, PU is related with intention to use, and PEOU is related with PU.

Ahmed and Patrick (2017) considers a model that includes self-efficacy (SE), perceived satisfaction (PS), and learning styles to investigate the effect of learning styles in predicting the PS and e-learning acceptance.

A sample of 210 students were considered and SEM was used to build and test the model. The learning styles include processing, perception, input, and understanding. Among the styles, understanding has significant impact on PS, SE is significantly related with PU and PEOU, PU and PEOU are significantly related with PS, and PU and PEOU are related with intention to use e-learning system.

Zuhal (2017) conducts a study to investigate the attitude of University students in Malaysia on the use of e-learning system using TAM. A sample of 151 students were considered to test the model and regression analysis was used to test the hypotheses. Analysis show that attitude to use e-learning is significantly related with intention to use the e-learning system. PU and PEOU are not significant with attitude to use e-learning system.

Tsai et.al. (2017) conducts a study to investigate the factors affecting nurses' choice of e-learning system. A sample of 557 nurses were considered and SEM was used for the study. The study considers information quality (IQ), system quality (SQ), service quality (SVQ) as external factors of the model and PU, PEOU, perceived enjoyment (PENJ), attitude and BI are considered as external factors. Analysis show that IQ is related with PU and PEOU, SQ is related with PU and PEOU, SVQ is related with PEOU. Also, PENJ is related with PEOU and attitude, PEOU is related with PU and attitude, and PU is related with attitude. Finally, PU and attitude are related with BI.

Ritter (2017) uses meta-analytic structural equation modelling (MASEM) to test the TAM in adopting the online management systems. The study considers 13 studies representing 3407 students and considers four path models (fixed-effects and random-effects) to measure the factors. The results give mixed conclusions. That is, in few cases the results are positive while in other cases they are negative. Hence, one has to check the adoptability of the model fresh and this motivates us to synthesize the results.

Priyanto et.al. (2017) conducts a study to find the factors that motivate the teachers of vocational school

to choose e-learning system. The study considers social environment, facilitating conditions as predictors of TAM factors. A sample of 132 teachers were considered in the study and regression analysis was used to test the hypotheses. Analysis shows that social environment is significantly related with PU and IU, facilitating conditions is significantly related with PEOU and e-learning usage, PEOU is related with PU. Also, Pu and PEOU are related with IU and IU is related with e-learning usage.

Dana and Darmawan (2017) conducts a study to identify the factors that motivate students to choose e-learning system. They consider a university that has implemented e-learning for two years and tests the significance of TAM among the students of the university. A sample of 73 respondents were considered in the study and used regression analysis to test the model. Results show that PU is significantly related with user acceptance of e-learning.

Sanjiv (2017) conducts a study to identify the factors that motivate the students to choose e-learning. The study considers self-efficacy, PU, PEOU, subjective norm, and system accessibility as predictors of e-learning attitude. A sample of 100 students were considered for the study and regression analysis was used to test the hypotheses. Results show that PEOU, PU, and self-efficacy are related with e-learning attitude, and e-learning attitude is related with BI.

Alejandro et.al. (2018) proposes an e-learning tools acceptance model (eLTAM) to identify the factors that affect students' choice of e-learning. The study includes factors such as instructor's preparation (INP), student's preparation (STUP), perceived self-efficacy (PSE), learning autonomy (LAUTO), and personal innovativeness as predictors of TAM factors. A sample of 1032 students from three different higher education institutions in Columbia were considered and confirmatory factor analysis (CFA) was used to test the model. The study identifies INP, LAUTO, and PSE as main factors affecting the adoption of e-learning tools by the study. Results indicate a strong relation between INP and PU, PSE and PEOU, and LAUTO and

PU. Somer's D was used to measure the association between the factors. The degree of association between the factors mentioned above are high and hence appropriate conclusions have been drawn on the relations between them.

Abinew et.al. (2018) conducts a study to examine the e-learning acceptance and use in technology institutes of Ethiopian public Universities. A sample of 400 teachers were considered and SEM was used to build and test the model. The study includes factors such as PEOU and PU as predictors of BI, and top management support, training, and incentive as predictors for Actual usage. Also, BI is taken as the antecedent for Actual usage. Results shows that BI is significantly related with actual usage, incentive is not related with actual usage, PEOU and PU related BI, top management support is related with actual usage, and training is related with actual usage. The study gives new factors to be considered while looking for factors that affect the TAM factors.

Irene et.al. (2018) attempts to build an extended TAM by including flow as an important external factor for predicting attitude to use e-learning system, PU, PEOU, behavioural intention to use, and actual system use. A sample of 2574 students were considered to build and test the model, SEM was used in building and testing the study. The results show that Flow is significantly related with actual system usage, PU, and PEOU. Also, PU and PEOU are related with attitude towards using, PU is related with BI, attitude towards using is related with BI and BI is related with actual system usage.

Ali et.al. (2018) extends TAM by including factors such as PU, PEOU, subjective norm (SN), work life quality (WLQ), internet experience (IE), computer self-efficacy (CSE), facilitating conditions (FC) as predictors of BI and actual usage (AU). A sample of 424 students were considered in the study and SEM was used to test the paths between the factors. Analysis shows that WLQ, PU, PEOU, IE, and SN are significantly related with BI. FC, BI, and CSE are related with AU.

Vululleh (2018) extends TAM by including two intrinsic

motivation attributes, namely, quality of life (QL) and social influence (SI). The sample considered is taken from a developing country and of size 269 and SEM was used to test the model. Analysis shows that PU, PEOU, SI, and QL are significantly related with BI and BI is related with AU.

Angela et.al. (2018) uses extended TAM to find the factors that are affecting students' choice of e-learning systems. A sample of 354 students were considered for the study and SEM was used to build and test the model. The study considers self-efficacy (SE), subjective norm (SN) and experience (EXP) as external predictors of PU and PEOU. Analysis shows that SE, EXP and SN are significantly related with PEOU. Also, PU and PEOU are significantly related with BI.

Bryan (2018) conducts a study in Uganda to identify the factors that affect the students' choice of elearning system. A sample of 213 students were considered for the study and regression analysis was used to test the hypotheses. Analysis shows that elearning policy is significantly related with PEOU and PU.

Tove (2018) conducts a study with an aim to study the impact of trust perceptions on teachers' intention to continue using e-learning technology. A sample of 401 university teachers were considered for the study and SEM was used to identify the significant paths in the model. The study considers trust in the system, trust in management, confirmation, PU, satisfaction, and intention to continue. Analysis shows that confirmation is significantly related with trust in system, PU and satisfaction. Also, trust in system, PU, trust in management, and satisfaction are related with intention to continue.

Hadeel and Kamaljeet (2018) conducts a study to identify the factors that motivate students to choose e-learning system in Saudi Arabia. They include service quality (SQ) and user experience (UE) as external factors of TAM. A sample of 353 students were considered for the study and SEM was used to build and test the model. Results show that PEOU is significantly related with user acceptance, PU is related

with user acceptance, service quality if related with PEOU, user acceptance is related with continuance usage intention, and user experience is related with PU.

Qais and Emad (2018) conducts a study to identify the factors affecting the adoption of e-learning system. They attempt to build a model as an integration of TAM and Delone and McLean models. The factors considered include PU, PEOU, system quality (SQ), information quality (IQ), computer self-efficacy (CSE). A sample of 386 students were considered for the study and multiple regression analysis was used to test the hypotheses. Analysis shows that PEOU, PU, SQ, IQ, and CSE are significantly related with students' satisfaction.

Aamer et.al. (2018) conducts a study to build a model that includes six external factors to predict the behavioural intention of the students towards elearning system. A sample of 437 students were considered and path analysis was used to test the model. They consider, result demonstrability (RED), subjective norm (SN) as predictors of PU, enjoyment (ENJ), self-efficacy (SE), perception of external control (PEC), and system accessibility (SYSACC) as predictors of PEOU. Analysis shows that RD and SN are significantly related with PU, and ENJ, PEC, SYSACC are related with PEOU.

Nasiru and Salihu (2018) aims to identify the factors affecting students' choice of e-learning in Nigeria. They consider UTAUT to achieve the objectives of the study. A sample of 286 students were considered and SEM was used to test the significance of the paths. The model considered had, performance expectancy (PEXP), effort expectancy (EFEXP), social influence (SI), and facilitating conditions (FC) as predictors of behavioural intention (BI) toward the usage of e-learning. Analysis shows that PEXP and EFEXP are significantly related with BI.

Also, FC and BI are related with AU.

Adhicipta (2018) builds a model by considering system characteristics (system interactivity, technical support, and screen design) and individual differences

(subjective norms, internet experience, and computer self-efficacy). A sample of 152 students were considered and path analysis was used to test the hypotheses. Results show that PEOU is related with PU, PU and PEOU are related with AU, AU is related with ITU, SN is related with PU and ITU, IE is related with PEOU, and CSE is related with PEOU.

Liu et.al. (2018) builds an extended e-learning acceptance model by including social influence (SI) and cost tolerance (CT). A sample of 156 students were considered in the study and path analysis was used to test the model. Analysis show that PU and PEOU are related with AU, PEOU is related with PU, AU is related with BI, SI is related with PU, SI is related with AU, and CT is related with AU.

Nisreen et.al. (2018) aims to identify the factors that affect the choice of e-learning system in Iraq. They integrate the factors of TAM and UTAUT to achieve the objectives of the study. A sample of 300 students were considered and PLS-SEM was used to build and test the model. The factors considered are-information quality (IQ), technical support (TS), PEOU, PU, subjective norms, self-efficacy, system quality. Analysis show that IQ is significantly related with SQ, PU, and BI, TS is related with IQ, PEOU, BI and actual usage of the e-learning system, self-efficacy is related with BI, PEOU is related with BI, PU is related with BI.

Mohamed et.al. (2019) extends TAM by including 4 external factors namely computer anxiety, perceived enjoyment, computer playfulness, and gender. The objective is to find the factors that affect the students to use web-based learning system. A sample of 250 teachers, educational experts, and workers in the education sectors in Libya were considered and SEM was used to build and test the model hypotheses. Analysis shows that PENJ is significantly related with PEOU, Computer playfulness is related with PEOU and PU, computer anxiety is related with PEOU. Also, PU and PEOU are related with attitude towards use, PEOU is related with PU, Attitude towards use is related with BI and BI is related with actual use of web-based learning.

Andrea (2019) aims at presenting an extended TAM to identify the factors that motivate the generation Z students to adopt e-learning. They study considers factors such as social factors (SF), e-learning anxiety (ANX), system access (SA), IT security awareness (IT), smart tool (ST), traditional education (TE), digital learning (DL), as external factors of TAM factors. The study also looks at digital learning and smart tool usages in the Hungarian environment. A sample of 500 responses were used to achieve the objectives of the study and SEM was used to test the hypotheses. The analysis shows that PU, DL, ST, SA, PEOU, and ANX are significantly related with motivation and usage intention (MUI). Also, SA, DL, SF, ANX, PE, DL, ST, SF, and ANX are related with PU. Finally, the study finds that IT and SF are not related with MUI, and, IT and ST are not related with MUI.

Sukainah et.al. (2019) considers TAM to identify the relation between the factors of TAM and acceptance of e-learning by the students of Kelase. A sample of 67 students were considered for the study and multiple linear regression is used to test the hypotheses. Results show that PEOU and PU are significantly related with acceptance of Kelase.

Gaurav et.al. (2019) conducts a study to evaluate the effectiveness of e-learning experience from students' perspective. The study considers those students who have registered to COURSERA and looks at two aspects related to the e-learning. The first one looks at e-learning system that includes system quality, information quality, and service quality and e-learning effectiveness the include user satisfaction and net benefits. Note that, the study considers e-learning system dimensions as predictors e-learning effectiveness and e-learning effectiveness is a predictor to user satisfaction and net benefits. A sample of 469 students were considered for the study and SEM was used to build and test the model. Analysis shows that system quality, service quality and information quality are significantly related with user satisfaction and new benefits.

Marzieh and Salman (2019) builds a model that includes factors such as e-learning motivation (ELM),

online communication self-efficiency (OCSE), perceived enjoyment (PENJ) as predictors to TAM factors. A sample of 181 valid responses were considered and SEM was used to build and test the model. Analysis shows that PU, PEOU are significantly related with e-learning acceptance and readiness. PEOU is related with PU. Also, ELM is related with E-learning acceptance and readiness with PU as mediator, PEOU as mediator. Similarly, OCSE is related with e-learning acceptance and readiness with PU and PEOU as mediators. PENJ is related with e-learning acceptance and readiness with PU, PEOU as mediators.

Farhan et.al. (2019) takes up a study to propose and design an E-learning User Interface (ELUI) using web programming to support instructional communication in an online learning environment. The study considers both students and teachers, a sample of 102 students and 10 teachers were taken. They adopt both quantitative and qualitative methods for analysing the data drawn. Students' responses were analysed using TAM and teachers' responses were analysed using content analysis. Analysis for students show that PU and PEOU are significantly related with BI and AU. Analysis for teachers show that teachers believe that ELUI would be successful if adequate training and support are provided.

Dimah et.al. (2019) proposes a comprehensive model based on a literature review and tests the validity of the same using a sample of 563 students who are engaged with an e-learning system. The comprehensive model considers factors such as technical quality (TSQ), information quality (INQ), service quality (SRQ), educational system quality (ESQ), support system quality (SUP), learner quality (LER), and instructor quality (INS) as predictors. TAM factors include PU, PEOU, Perceived satisfaction and taken as predictors of benefits (BNT). Analysis shows that TSQ is significantly related with SAT and PU, INQ is related with SAT and PU, SRQ is related with SAT, ESQ is related with PEOU, SUP is related with SAT, PU, and PEOU, LER is related with SAT, PU, and PEOU, INS is related with SAT, PU, and, SAT and PU are related with BNT.

Damijana et.al. (2019) conducts a study to identify the factors that influence student perception on e-course's usefulness in blended learning environment. A sample of 539 students were considered in the study and SEM was used to build the model. Factors considered are technology acceptance (TA), face-to-face (F2F), e-teaching (ET) as predictors of PU. Analysis shows that all the three factors are significantly related with PU. ET and F2F are directly related with PU, while TA has an indirect impact on PU.

Said et.al. (2019) conducts a literature review of articles published for the last 12 years for identifying the external factors of the TAM. The factors identified include- system quality, content quality, information quality, computer self-efficacy, subjective norm, enjoyment, accessibility, computer playfulness. A sample of 435 students were considered to test the model. Analysis shows that SQ is related with PEOU, IQ is related with PU and PEOU, CSE is related with PEOU, ENJ is related with PU and PEOU, accessibility is related with PU and PEOU, and computer playfulness is related with PEOU. Also, PEOU is related with PU, PU and PEOU are related with attitude towards using and BI. Finally, BI is related with actual system usage.

Flora and Zhang (2019) empirically tests the general extended TAM for e-learning to identify the factors that affect students' usage intention of e-learning system. A sample of 172 students were considered and SEM was employed to test the model. Factors considered are subjective norm, experience, enjoyment, computer anxiety, and self-efficacies. Analysis show that SN is related with PU and PEOU, experience is related with PEOU, enjoyment is related with PEOU, computer anxiety is related with PU and PEOU, and PEOU is related with PU. Also, PU and PEOU are related with usage intention.

Anastasia and Nikolaos (2019) proposes a model which is an extended version of TAM, by including factors such as social norm (SON), self-efficacy (SE), system accessibility (SYSA), and year (Y). A sample of 345 students were considered and SEM was used to build the model. Analysis shows that AT is significantly

related with BI, Y is related with BI, PE is related with AT, PE is related with PU, PU is related with AT and BI, SE is related with BI and PE, SN is related with AT and BI, SN is related with PU, SA is related with BI, and SA is related with PE.

Marie et.al. (2019) extends the TAM by adding factors such as subjective norms (SN), images (IMG), output quality (OQ), facilitating conditions (FC) and wellbeing at work (WBaW). Internal factors include PU, PEOU, intention to use e-learning (IU), and usage behaviour (UB). IMG is related with PU, OQ is related with PU, PEOU is related with IU, PEOU is related with IU, FC is related with PEOU, IU is related with UB, and U is related with WBaW.

Waleed et.al. (2019) proposes an extended TAM by integrating innovation diffusion theory and TAM. A sample of 1286 students were considered for the study and SEM was used to build the model. The factors considered are- relative advantages (RA), complexity (CO), trialability (TR), observability (OB), perceived compatibility (PC), and perceived enjoyment (PENJ) and TAM factors include PU, PEOU and BI. Analysis shows that RA is significantly related with PU and PEOU, CO is related with PEOU, TR is related with PU, OB is related with PU, PC is related with PU and PEOU, PE is related with PU and PEOU, PEOU is related with PU, PU is related with BI, and PEOU is related with BI.

Zhi et.al. (2019) uses extended TAM to identify the factors that affect the choice of e-learning system by the students. A sample of 275 students were selected and SEM was used to build the model. Factors considered include- social influence (SI), system characteristics (SCH), individual differences (ID), and facilitating conditions (FC). Analysis of the data show that SC, SI, PEOU are significantly related with PU; FC and ID are related with PEOU; PU and PEOU are related with BI. The study also shows that output quality, perceived enjoyment and objective usability are critical to the users' continued usage intentions of online learning applications.

Edward et.al. (2019) conducts a study to predict the students' intention to accept and use technology in

learning. A sample of 337 students were considered and regression analysis was used to test the hypotheses. Analysis shows that PU is related with intention to use and intention to use is related with actual usage.

Rizwan et.al. (2019) conducts a study to understand the attitude of students towards e-learning. They use TAM and attempts to assess the influence of computer self-efficacy (CSE) in e-learning usage. A sample of 110 students were considered and regression analysis was used to test the hypotheses. Analysis shows that PEOU is related with AU; PEOU is related with AU, with CSE as a mediator; PU is related with AU; PU is highly related with AU, with CSE as a mediator; AU is related with Intention to use.

Wang et.al. (2019) conducts a study to find the relation between five factors namely-computer self-efficacy (CSE), enjoyment (ENJ), PEOU, PU, and user perception (UP) and the dependent variable continuance intention (CI). A sample of 170 IT students were considered and PLS-SEM was used to build the model. Analysis shows that CSE and enjoyment are significantly related with CI and other factors are not significantly related with CI.

Note that the above literature gives one an idea on the factors that are significantly related with either elearning usage or continuance or attitude towards use of e-learning. The results taken from various studies spanning from 2000 to 2019 helps one to find the strength of paths between the factors. Since the methodology planned to apply is meta-analysis, we focus more on presenting the results in chronological order to find the paths and hence, one may not find linkers between the results presented above. It is just aggregating the results found over the years.

4. Research Gap

From the above literature review and the summary, we identify the following research gap.

Many studies have been conducted to identify the factors that affect the leaners' choice of e-learning or continuance of e-learning. But not many could give a

comprehensive model that takes into consideration all the significant factors that affect learners' choice/ continuance of e-learning. Though few studies have attempted to aggregate the results of previous studies to build a model, the recent developments have not been recorded and this has created a gap. Also, few studies have claimed some of the factors to be significant, while others have proved that they are not significant. There is a need to consolidate these results and find a conclusion on their significance, as an aggregate of the previous findings. Another important aspect is to identify new paths between the factors and note their significance in explaining the behaviour of the learners towards adoption of e-learning. Also, it is important to identify/establish the paths between the factors, provide the path coefficients as an aggregate of the previous studies and study their significance. This will also eliminate few paths that have weaker path coefficients and helps one to rebuild the model. The current study fills the gap.

5. Motivation for the study and Problem Statement

5.1. Motivation for the study

E-learning is an important change the world has seen in the learning process and has opened gates for learners who wish to update themselves with the latest developments in their respective fields. It has helped students to learn new aspects in their subjects of interest, has given employees to update themselves in their working domains, employers to encourage their employees to get trained on latest developments in their domains, instructors have got opportunities to share their knowledge with wider section of learners, and developers of courses to develop customized courses to meet the needs of the learners. Overall, e-learning has changed the learning scenario across the globe and has removed barriers for the flow of the wisdom. Along with advantages, it has also created new challenges to the learners, instructors and developers. Among other challenges, the important challenge is to understand the attitude or

behaviour of the learners towards e-learning systems. It is very important to know the likes/dislikes of the users towards e-learning usage and build a platform that is more user friendly. For this, one has to conduct studies on the users of e-learning and identify the factors that affect their motivation towards the adoption of the platforms. Researchers have tried to understand the same by using models such as, technology acceptance model (TAM), TAM2, TAM3, UTAUT etc. In all the cases the attempt is to identify the factors that affect the choice of e-learning by the users. In the modelling process, researchers have divided the factors into two groups-intrinsic and extrinsic. The intrinsic factors include PU, PEOU, AU, ATU, BI etc. Extrinsic factors include quality characteristics, system characteristics etc. Over the years, researchers have added new dimensions to both the sets of factors. Attempts have been made to identify the significance of each of these factors on the actual usage intentions of the users. Interestingly, these studies have been conducted at different places (geographical regions) and each of them have given different set of factors affecting the e-learning choices. While few studies have identified the factors as significant, while others have found the same to be insignificant at other places. This has created a void and there is a need to fill this by identifying the factors that are significant. A fresh study based on primary data may again lead to similar confusion and one has to conduct a study that will take into consideration all the previous studies and aggregates the results. This can be achieved by using meta-analysis, which synthesizes the results found by the researchers. This is the main motivation for conducting the current study.

5.2. Problem Statement

Studies conducted by the researchers across the globe have given out different extrinsic and intrinsic factors for understanding the behaviour of the learners/users towards using E-learning system. The main objective of every study is to identify the factors that affect the choice of e-learning system by the users. This is

achieved, in most of the times, by using technology acceptance model or an extended version of the same. It is believed that the user acceptance/continuance play an important role in making an e-learning platform successful. The model includes intrinsic factors such as perceived usefulness (PU) and perceived ease of use (PEOU). These are expected to influence the factors such as, attitude to use (ATU), actual usage (AU), and behavioural intention of the users towards e-learning system. Few also have given additional intrinsic factors such as perceived enjoyment, subjective norms etc. The extrinsic factors include demographics of the users, self-efficacy, quality aspects etc. Few studies have tried to add the factors, while others have tried to find the significance of these factors in predicting the behaviours. Interestingly, few studies have shown that the factors are significant, while others have proved that they are not. This has created a confusion amongst the users, developers, and instructors, on identifying the factors that are significant in motivating one to choose elearning platforms. Hence, there is a need to synthesize the results found at different time points and places and give the overall significance of each of the factors on behaviours of users towards adoption of e-learning systems. This synthesis will help one to find the average effect of each of these factors and also understand the priority amongst these factors. This helps the users to know why an e-learning platform is being chosen by them and what benefits they get and also what factors need to be taken while choosing a platform. Instructors to know about the actual motivating factors that are making user to choose a platform and design the courses accordingly. Developer can be more cautious while designing a platform. It is better to have results at one place than having them scattered and creating confusion. Another important problem is that, every study adds a new factor and one needs to know the strength of these factors. Strength means, repetitive usage of a factor while considering a platform and the average beta value. Few factors may not have much strength and they need not have to be considered. This study aims at providing solutions to the mentioned

problems.

6. Research Methodology

We use meta-analysis to achieve the objectives of the study and in the current section we present the steps adopted in meta-analysis. We present the methodology as required and more information about the same can be obtained from notes on meta-analysis by Stefan (2015), Lipsey and Wilson (2001), Borenstein et.al. (2009).

Meta-analysis (MA) is process of systematically integrating the research findings using statistical methods. It helps one to find new directions and findings in research by a way of synthesizing the results founds in earlier studies. It can be performed where there are many scientific studies addressing the same issue, with each study indicating the results that are expected to have some degree of error. The objective is then to use statistical methods to derive a pooled estimate closest to the unknown value. MA yields a weighted average from the results of individual studies and the weights are allocated based on the variances of the estimators. One of the important advantages of this approach is getting a higher statistical power and more robust point estimate. It applies to empirical studies and to research studies that produce quantitative findings. Since MA focuses on the aggregation and comparison of findings, it is important that these findings can be meaningfully compared. That is, findings must be conceptually comparable and be configured in similar statistical forms. The findings considered in MA must result in comparable studies and MA represents each study's results in the form on effect size (ES). An ES is a statistic that encodes the quantitative information from the study considered. Effects sizes are computed based in the types of studies considered. For example, studies that results in correlations are meta-analysed using different effect sizes as compared to studies that results in mean values of dependent variables. The key to MA is to define appropriate effect size that is capable of representing the quantitative findings of a set of research studies in a standardized form that helps one to have meaningful comparisons and analysis across the studies.

MA helps one to present the cumulative results by reducing the distorting effects of primary studies (sampling error, measurement error, and others) and hence reduces conflicts of differing findings. It helps to develop theories by identifying the relationships between the variables (Schnidt and Hunter (2015) pp. 17-37). MA helps to identify the gaps in the existing research and help to design new research. It also helps in keeping track of ongoing research by providing aggregated data from vast range of studies.

The following are the strengths of MA:

- 1. It is a disciplined process of summarizing the research findings and needs documentation of each step, open to scrutiny. One has to specify the criteria that defines the population of study findings at issue, search strategies for retrieval of data and formal coding of study characteristics and findings, and data analysis in support of the conclusions drawn. The user of the research can assess the researcher's assumptions, methodology, and conclusions.
- 2. Unlike review of existing literature in a qualitative

- manner to draw valid conclusions, MA focuses on magnitude and direction of relevant statistical relationship in a collection of studies. This helps one to understand the relationships between the variables in a better way and also gives one a way to synthesize the results in a structured way.
- 3. MA gives estimates of the relationships with better power than studies that only focuses on providing the qualitative summaries. MA makes one to systematically code the characteristics and precisely examine the relationships between the study findings. Furthermore, estimating the effect sizes in each study and pooling those sizes cross studies, makes one to synthesize the results with more statistical power.
- 4. MA helps one to gather information in an organized way from a large number of study findings under review.

Process of Meta-Analysis

The following flow chart gives process to be adopted while conducting a study using MA.

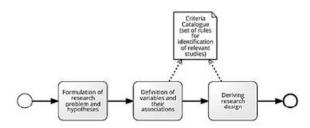
Figure-17 : Process of MA

Source: Taken from note on MA by Stefan (2015)

In the first stage, one has to specify a research problem or question and related aspects, like in any primary

research process. Then, one has to obtain set of rules for identifying relevant studies as data basis for conduct of MA.

Under this, the researcher starts with a research topic or idea and then conducts initial literature review to gain more insights into possible theories as a basis for validity of MA. This helps one to extract relations between the variables of interest. Reviewing theories will make one to get required motivation for the proposed MA (new MA or adding new information to

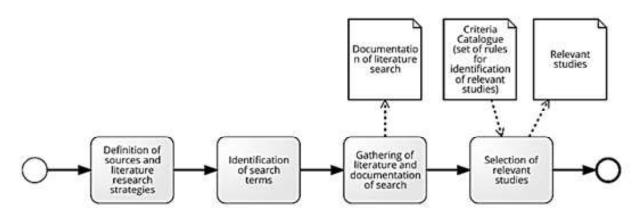

the existing MA). The theoretical foundations lead to more research questions and gaps to be filled by the new study.

This stage is an iterative stage, where the steps are repeated till proper information on the variables and their relations are identified. This stage also helps one to distinguish between relevant and irrelevant literature related to the problem considered. The research design can be identified at this stage, based on three aspects:

1. The quantitative results obtained. 2. The target population of the research problem or hypotheses. 3. The aim of the research question: description, association or causal explanation of the events. The following figure gives the flow

Figure-18 - Process at first stage of MA Source: Taken from note on MA by Stefan (2015)

In the second stage (Search for the literature) the

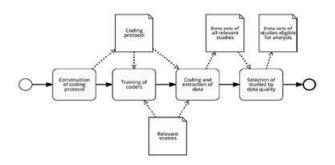


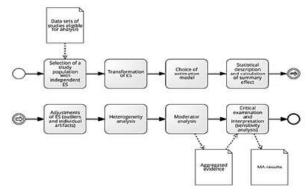
researcher retrieves relevant studies and tries to collect the relevant data from these studies. The relevant studies are searched in electronic data bases, research reports, systematic inquiry of peers of the same research field. The following diagram gives the flow in the second stage.

The next stage in the process is "Extraction and Coding of Data from studies", which is very critical for conduct of MA and also quality of MA. To achieve this, the coding process needs to be developed and the coders have to be trained, so that they extract and code the data found in studies. The studies are in turn selected based on the quality of the data. The following diagram gives the flow of the process at this stage.

Figure-19: Process at second stage of MA

Source: Taken from note on MA by Stefan (2015)




Figure-20 : Process at third stage of MA Source: Taken from note on MA by Stefan (2015)

The coding protocol consists of a "Coding form" and

a "Coding manual". Coding forms are like detailed questionnaires like those of primary studies and coding manual provides guidance on "how to apply coding form items to studies". This process of coding has to be iteratively done so that relevant and optimum information is extracted from the studies.

The next stage is application of statistical methods to integrate the results obtained from different studies. The following figure gives the flow of the process.

Figure-21 : Process at fourth stage of MA

Source: Taken from note on MA by Stefan (2015)

Under this stage, one applies meta-analysis methods on the effect sizes. The analysis helps one in getting information on significance, for example, positively, negatively or non-significant, p-values, and effect sizes, which are estimates and describe strength of the relationship between the variables. Valid conclusions and suggestions on the selected topic, solutions to the problems identified will be done at this stage. The quality of the results depends on the quality of the execution of the steps at the earlier stages.

The above stages of MA have to be iteratively applied till one gets the optimum results. One can refer to the notes of Stefan (2015) to get the steps in more precise way. We now present details of the two types of model considered in MA.

Fixed Effects Model and Random Effects Model

There are two statistical models for MA, fixed effects model and the random effects model. Fixed effects model assumes that the studies considered comes from a population of studies that have a common but unknown true effect size (ES) and the differences in the observed effects are due to sampling error. Another name to this is common-effect model. Under a random effect model, one assumes that studies have varied ES. Usually ES varies with the study as, the studies are conducted independently by different researchers at different places, with different demographic profiles of the respondents. Hence, one can expect that the ES's to be similar but not identical.

Under this model, observed ES's are random sample of each study's true ES. One has to select an appropriate model to perform MA, achieve the goals of the study and interpretation of the statistics. In any of the models, the combined effect size is calculated as the weighted mean of the effect sizes. The weights are assigned based on the precision of study, which is the inverse of the variance of ES. More precise studies receive higher weights and other receive as per the magnitude of the variance. Also, the weights are assigned based on the model adopted. Under a fixed effects model, there will be on type variance, within study variance and under a random effects model, there will be within study variance and between study variance.

The fixed effect model for any study i is given by

$$Y = \theta + \varepsilon_i$$
,

where ε_i is the difference between the common true mean and the observed mean for the study i. In a fixed-effect model MA, the overall study error variance is equal to the within-study error variance.

Under this model, for each study a normal curve is superimposed on the true scores and is based on the within-study error variance and gives range within which the observed mean score is likely to fall. The

variance is given by $V_i = \frac{\sigma^2}{n}$ and the corresponding

weight is given by $W_i = \frac{1}{v_i}$. Using this weight, the

weighted mean or the combined effect is computed using the following formula (here k stands for number of studies considered)

$$M = \frac{\sum_{i=1}^{k} W_i Y_i}{\sum_{i=1}^{k} W_i}$$

The variance of the combined effect is defined as the reciprocal of the sums of the weights, or

$$V_i = \frac{1}{\sum_{i=1}^k W_i}$$

and the standard error of the combined effect is given as the square root of the variance.

$$SE(M) = \sqrt{V}$$

Using this, one can construct a 95% confidence interval for the combined effect using the following formula

Lower limit= M-1.96 * SE (M)

Upper limit= M+1.96 * SE (M).

Under the fixed-effect model, we can test the null hypothesis that the common true effect size is a specific value X0, where X0 is usually zero. The corresponding test statistic is given by

$$Z = \frac{M - X0}{SE(M)}$$

Using normal distribution, one can calculate the p-value to take the decision on the null hypothesis.

The random effects model for study i is given by

$$Y = \theta + \mu_i + \epsilon_i$$

where μ_i is the difference between the gran mean (θ) and the true mean (θ_i) for the study i is the difference between the true mean for the study i and the observed mean (Y) for the study i. There are two sources for the variance under this, within-error study variance and the between error study variance. Similar to fixed effects model, a normal curve is superimposed above θ and the standard deviation of the of the distribution is depicted as T and the variance is T-square. Using the variance calculated under the fixed effect model and T-square, total variance is calculated and the same is used to compute the respective weights.

The formula for calculation of weights under random effects model is

$$Q = \sum_{i=1}^{k} W_i Y_i^2 - \frac{\left(\sum_{i=1}^{k} W_i Y_i\right)^2}{\sum_{i=1}^{k} W_i}$$

Q follows Chi-square distribution with u degrees of freedom, u= (Number of studies)-1. Q statistic was proposed by Cohran (1954) and used to test the hypothesis. But, can exhibit poor ability to detect a true heterogeneity among studies when the MA has a small number of studies. Huedo-medina et.al. (2006) argues that I-square detects heterogeneity better than Q. I-square is the percentage of total variability in a set of effect sizes due to true heterogeneity-the intra study variability. It is calculated using the following formula

$$I^2 = \left(\frac{Q - u}{Q}\right) * 100$$

A large value of I-square indicates that the observed variance is actually existent and needs to be explained. Higgins et.al. (2003, pp-559) establishes a scale: low if I-square=25%, moderate I-square =50%, and high I-square=75%. I-square is neither directly influenced by the number of studies not it is an estimate of the underlying true effects. It is a descriptive statistic and only the heterogeneity of the observed measures is addressed.

When Q-statistic rejects the null hypothesis, one can conclude that apart from within error study variance, there will be a contribution from between error study variance. To estimate between variance (T-square), one has to use Q and the degrees of freedom. The following is the formula for calculating T-square.

$$T^2 = \frac{Q - df}{C}$$

where C is calculated using the following formula

$$C = \sum_{i=1}^{k} W_i - \frac{\sum_{i=1}^{k} W_i^2}{\sum_{i=1}^{k} W_i}$$

Based on the decision taken on the rejection of null hypothesis on homogeneity, one can choose the model to be adopted. If the null hypothesis is rejected, then one can conclude that there are two sources of variation (Within and Between) and if not, then there

will be one source of variation. One can adopt the sequence of steps to finally arrive at the model and make use the same to draw conclusions on the proposed objectives. Note that, either the fixed or random effects model, the appropriate conclusions are drawn based on the effect sizes. In a fixed effect model, one computes the combined effect and in a random effects model, one computes an average effect. The effect size is the quantitative measure of the magnitude of a phenomenon. If can be the correlation between the two variables, regression coefficients, mean difference etc. Also, the standard deviation of the effect size is also critically important. A higher value makes the measurement and the conclusion drawn based on the same weaker. Cohen (1992) proposes cut-off points for the effect sizes. If the effect size is around 0.1 in magnitude, one can conclude that the effect is small. If the effect size is around 0.3 in magnitude, one can conclude that the effect is medium and if it is around 0.5 or larger, one can conclude that the effect is large. In meta-analysis studies, the conclusions are usually drawn based on the effect sizes and the related testing. Hence, it is suggested to take larger number of studies to get better estimates for the effect sizes. But, Valentine et.al. (2010) suggest that there has to be at least two studies to conduct the meta-analysis.

In order to perform MA, the above stages and the calculations are essential, and we have adopted the same in the current study, to achieve the objectives of the study.

In the next section, we present the process adopted in the current study.

1. Adoption of meta-analysis in the current study

In this section, we present the sequence of steps adopted for conduct of meta-analysis and present the process adopted to estimate the missing information in the studies considered.

Stage-1: Formulation of the research problem and hypotheses

The current study has been taken up to identify the factors that motivate learners to choose e-learning system. This is the main objective of the study and the related literature is reviewed. The literature considered is taken from the year 2002 to 2019 and the key findings from each study is recorded. To achieve the objective of the study, we have focused more on literature related to model like technology adoption model (TAM), extended TAM etc. The variables/factors and relation between them in the studies are recorded and the same are considered in the current study. For example, factors perceived ease of use (PEOU), perceived usefulness (PU) are very important in TAM and they have a strong relation with dependent variables like attitude to use the system, behavioural intention to use the system and the actual usage of the system. Such factors and their relations have been recorded and the research design is derived. Since we wish to study and explain the associations/ relations between the variables, we consider correlational research design the current study. The data gathered through systematic review of the literature will be used to test the hypotheses constructed. Based on the literature review, we identify the research gap (section-4) and formulate the problem statement (section-5.2). Using the information gathered from the literature, we identify the key factors and propose a comprehensive model to understand the behaviour of the learners towards the usage of the e-learning system. Appropriate hypotheses related to the model are constructed.

Stage-2: Search for the Literature

Literature related to the key variables identified in stage 1, have been collected and relevant information was gathered. The studies have been gathered from different journals and from different data bases (ScienceDirect, IEEExplore, Emerald, Springer etc.) and google is used as the major search engine. The key words used to search include "TAM and E-learning", "Factors impacting E-learning", "TAM and Web-based

learning", "TAM and online learning". A total of 128 relevant studies out of 250 have been finally identified and the data on the variables has been collected. The studies have been carefully selected, based on the variables used in the study, methodology used to

address the objectives, quality of the analysis, availability of the data etc. Studies that do not include the variables identified have been excluded. The following tables gives the number of studies considered for each of the factors identified.

Table-2: Number of studies considered for the Intrinsic Factors

Factor	PU	PEOU	ATU	BI	AU	PS	PENJ
Maximum of studies	73	72	27	65	17	12	19

Source: Constructed by the researcher

Table-3: Number of studies considered for the Extrinsic Factors

Factor	SN	SE	ANX	IQ	SYQ	SA	COMPA	EXP	SERQ	CQ	CAB	MS
Maximum of studies	25	31	12	10	11	4	3	10	10	8	5	3

Source: Constructed by the researcher

Stage-3: Construction of coding protocol

The studies considered have been thoroughly scrutinized to gather the required information/data. Coding rules were developed to ensure that all the studies were treated consistently. From each study, the following data have been collected.

- 1. Year of publication and the author details.
- 2. Sample size- the number of respondents.
- 3. User type- type of respondents considered in the study.
- 4. E-learning technology- e-learning system, online based learning, we-based learning.
- 5. Intrinsic/ dependent factors- Used to finally understand the behavior of the learners/users.
- Extrinsic/ independent factors/TAM factors-Used to predict the intrinsic factors and explain the behavior.
- 7. Reliability measures levels- Cronbach alpha, Average variance extracted (AVE) and Composite reliability (CR) (presented in table-).
- 8. Paths- The relations between the factors (between external and the TAM factors, between

the TAM and the intrinsic factors).

- 9. Effect sizes- Path coefficients are considered as effect sizes.
- Significance- Whether the path is significant or not. Significance is denoted by "S" and nonsignificance by "NS".
- 11. P-values are considered for the calculation of the t-values and the standard error values.

The details of the same are presented in table- and are used to compute the mean effect sizes and test the proposed hypotheses.

Stage-4: Application of Statistical MA-methods

We use random effects model in the current study and consider regression coefficients as the effect sizes. The same are used to compute the weighted effects and test the hypotheses. The standard error (SE) of the effect size is gathered directly from the studies, where available and in cases where they are not available, we use the following process. **Case-1:** SE is directly gathered from the studies.

Case-2: Few studies have reported the t-values and the beta coefficients and SE is calculated by using the following formula

$$SE = \frac{t}{B}$$

Case-3: Few studies have only given the details on significance or non-significance or p-values. In such cases, using the p-values, the t-values are computed by using the inverse t-distribution formula and the same are used in calculation of the SE. For example, if the p-value is 0.039, the corresponding t calculated value is computed at the respective degrees of freedom (n-2, n is the sample size considered in the study) using the inverse t-function for a two-tailed test and the same is used in the calculation of SE.

Finally, SE is used to calculate the respective weights, T-square is computed using the same and the respective mean effects are computed to draw conclusions on the hypotheses. We follow Cohen's criterion to identify the paths and drop few if the criterion is not satisfied. We follow this process iteratively, till the final comprehensive model is identified. Section of "Data Analysis and Findings" gives all the details elaboratively.

Final Stage: Presentation of the results

Under this stage, we present the overall results of the analysis and the comprehensive model. Tables related to paths and the corresponding calculations are presented. Towards the end, we present the managerial implications of the findings. The remaining part of the report is organized in the following way.

Section-7 gives the process adopted to propose the comprehensive mode.

Section-8 gives the research questions, objectives and hypotheses of the study.

Section-9 gives the data analysis and the findings of the study.

Section-10 gives the Discussion of the findings and Conclusion.

Section-11 gives Suggestions from the study.

Section-12 gives the Limitations and Future work.

8. Model Building

In this section, we present the process adopted to build the model and finally present the comprehensive model to understand the behaviour of users in adopting the e-learning system.

Technology acceptance model (TAM) was introduced by Davis (1986) with AU as dependent variable and ATU as its antecedent. The study introduces PU and PEOU as two important predictors of ATU and PEOU is linked to PU (Figure-11). Davis, Bagozzi and Warshaw (1989) includes intention to use or BI between ATU and AU (Figure-12). The final version of TAM was proposed by Venkatesh and Davis (1996) by showing a direct influence of BI on AU (Figure-13). Venkatesh and Davis (2000) proposed an extended TAM, TAM2 by specifically considering Subjective norm (SN), Image, Job relevance, Output quality, Result demonstrability as antecedents for PU. Also, experience and Voluntariness as moderators. In this model SN is linked to PU and BI (Figure- 14). Venkatesh and Bala (2008) combines TAM2 and the model of the determinants of PEOU (Venkatesh (2000)) and builds TAM3 (Figure-13). King and He (2006) performs a meta-analysis on usage of TAM in different fields and finds that TAM is valid and robust model. They use 88 published studies. Šumak et.al (2011) considers 42 independent published papers related to elearning and shows that TAM is the most commonly used in e-learning. Abdullah and Ward (2016) considers 107 studies in e-learning where TAM was used and finds few important factors that predict PU and PEOU. Baki et.al. (2018) considers 203 studies and identifies factors that explains the behaviour of elearners towards e-learning system. Salloum (2019) builds a comprehensive TAM for e-learning.

Apart from these studies, there are several published studies that have identified both extrinsic and intrinsic factors that can be used to predict the behaviour of the E-learners and the same are considered in the current study. The current study is an attempt to identify new factors and paths between them, which will help one in understanding the behaviour of the

Table-4 L Details of the studies and factors considered in the current study

S.No	Year	Study	Sample size	User type	E-learning technology type	Theory	Territory									3 4 6	raciols			
1	2019	Mohammed et.al.	250	Teachers	Web-based learning system	ТАМ	Libya	PU	PEOU	ATU	BI	AU	Perceived Enjoyment	Computer Anxiety	Computer Playfulness					
2	2019	Andrea	200	Students	E-learning system	ExTAM	Hungary	PU	PEOU	BI	System Access	Computer Anxiety	Social Factors	IT security awareness	Smart Tools	Traditional Education	Digital Learning			
3	2019	Sukainah et.al	29	Students	E-learning assessment	TAM	Indonesia	PU	PEOU	AU										
5	2019	Marzieh	181	Students	E-learning acceptance	ТАМ	Iran	PU	PEOU	AU	E-learning Motivation	Online Communication	Perceived Enjoyment							

9	2019	Farhan et.al.	102	Students	E-learning system	TAM	Canada	PU	PEOU	ATU	BI										
7	2019	Dimah et.al.	563	Students	E-learning system	TAM	Υn	PU	PEOU	PS	Technical system quality	Information Quality	Service Quality	Educational system Quality	Support system quality	Learner Quality	Instructor Quality				
&	2019	Damijana et.al.	539	Students	E-learning	Others	Slovenia	PU	Technology acceptance	E-teaching	Attitude to Face-to-Face										
6	2019	Salloum et.al.	435	Students	E-learning system	ExTAM	UAE	PU	PEOU	ATU	BI	AU	System Quality	Content Quality	Information Quality	Self-efficacy	Subjective Norm	Perceived Enjoyment	Accessibility	Computer Playfulness	
10	2019	Flora and Zhang	172	Students	E-learning system	ExTAM	China	PU	PEOU	BI	Subjective norm	Experience	Perceived enjoyment	Computer Anxiety	Self-efficacy						

11	2019	Anastasia and Nikolaos	345	Students	E-learning system	ExTAM	Greece	PU	PEOU	ATU	BI	Self-efficacy	Social norm	System accessibility	Year				
12	2019	Marie et.al.	159	Employees	E-learning system	ExTAM	Cameroon	PU	PEOU	BI	AU	Subjective norm	lmage	Output Quality	Facilitating conditions				
13	2019	Waleed et.al.	1286	Students	E-learning system	ExTAM	Malaysia	PU	PEOU	BI	Relative advantages	Complexity	Trialability	Observability	Perceived compatibility	Perceived Enjoyment			
14	2019	Zhi et.al	275	Students	E-learning system	ExTAM	China	PU	PEOU	BI	Social Influence	System characteristics	Individual differences	Facilitating conditions					
15	2019	Wang et.al.	170	Students	E-learning system	ExTAM	Malaysia	PU	PEOU	IB	Self-efficacy	PENJ	User Perception						

16	2019	Rizwan et.al	110	Students	E-learning system	TAM	India	PU	PEOU	ATU	BI	Self-efficacy							
17	2018	Abinew et.al.	400	Teachers	E-learning	ExTAM	Ethiopia	PU	PEOU	BI	AU	Management Support	Training	Incentive					
18	2018	Irene et.al.	2574	Students	E-learning	ExTAM	Spain	PU	PEOU	ATU	BI	AU	Flow						
19	2018	Ali et.al.	424	Students	E-learning	ExTAM	Pakistan	PU	PEOU	BI	AU	Subjective Norm	Work life quality	Internet experience	Self-efficacy	Facilitating conditions			
20	2018	Vululleh	269	Students	E-learning system	ExTAM	Liberia	PU	PEOU	Social Influence	Quality of life								

21	2018	Angela et.al.	354	Students	E-learning system	ExTAM	Indonesia	PU	PEOU	BI	Self-efficacy	Subjective Norm	Experience							
22	2018	Hadeel et.al.	353	Students	E-learning system	ExTAM	Saudi Arabia	PU	PEOU	BI	Service Quality	Experience	Acceptance							
23	2018	Aamer et.al.	437	Students	E-learning system	ExTAM	Saudi Arabia	PU	PEOU	ATU	BI	Result Demonstrability	Subjective Norm	PENJ	Self-efficacy	Perception of external control	System accessibility			
24	2018	Qasis et.al.	386	Students	E-learning system	ExTAM	Jordan	PU	PEOU	PS	System quality	Information Quality	Self-efficacy							
25	2018	Adhichipta	152	Students	E-learning system	ЕхТАМ	Indoneisa	Πd	PEOU	ATU	BI	Subjective norm	Experience	Self-efficacy	System Interactivity	Technical Support	Screen Design			

26	2018	Liu et.al.	156	Students	E-learning system	ЕхТАМ	China	PU	PEOU	ATU	BI	Social Influence	Cost tolerance						
27	2018	Nisreen et.al.	300	Students	E-learning system	ExTAM	Iraq	PU	PEOU	BI	AU	Information quality	Technical Support	Subjective norms	System Quality	Self-efficacy			
28	2017	Nadia et.al.	306	Students	E-learning system	ExTAM		PU	Ease of access	Level of interaction	Service Quality	Internet Quality							
29	2017	Ibrahim	95	Students	E-learning system	ExTAM	Johor	PU	PEOU	BI	Instructor Characteristics	Self-efficacy							
30	2017	Manuel	629	Students	E-learning technology	ExTAM	Filipino	PU	PEOU	BI	Integrated Multimedia	Perceived quality work of life	System Interactivity	Social media influence	Internet connectivity experience				

31	2017	Chang et.al.	714	Students	E-learning system	ExTAM		PU	PEOU	BI	Subjective norm	Experience	Perceived enjoyment	Computer Anxiety	Self-efficacy					
32	2017	Faria and Mariam	354	Students	E-learning system	ExTAM	Pakistan	PU	PEOU	ATU	BI	Subjective norm	System characteristics	self-efficacy	Experience	Perceived Enjoyment	Computer anxiety	Organizational accessibility		
33	2017	Marija	286	Students	E-learning system	ExTAM	Serbia	PU	PEOU	ATU	E-learning design									
34	2017	Willie et.al.	252	Students	E-learning system	ExTAM	South Africa	PU	PEOU	BI	Perceived Interaction	Course design	Interface design	Experience						
35	2017	Ahmed and Patrick	210	Students	E-learning	ЕхТАМ	Iraq	PU	PEOU	BI	Sd	Processing	Perception	Inout	Understanding	BELSSE				

40	39	38	37	36
2016	2016	2017	2017	2017
Said	Richard et.al.	Sanjiv	Priyanto et.al.	Tsai et.al.
286	357	100	132	557
Students	Students	Students	teachers	Nurses
E-learning system	E-learning system	E-learning system	E-learning system	E-learning system
ExTAM	ExTAM	ExTAM	ExTAM	ExTAM
Saudi arabia	Ghana	New Delhi	Yogyakarta	Taiwan
PU	PU	PU	PU	PU
PEOU	PEOU	PEOU	PEOU	PEOU
BI	ATU	ATU	IB	ATU
AU	BI	BI	NΑ	BI
Subjective norm	Self-efficacy	Self-efficacy	Social environment	Information quality
Image		Subjective norm	Facilitating conditions	System quality
Jon relevance		System accessibility		Service quality
Output quality				Perceived enjoyment
Result demonstrability				
Self-efficacy				
Perceptions of external control				
Computer anxiety				
Computer playfulness				
Perceived Enjoyment				
Objective usability				

41	2016	Moreno et.al.	251	Students	E-learning system	ExTAM	Brazil	PU	PEOU	ATU	BI	System Interactivity	Social Influence	Output Quality	Cognitive Absorption	Self-efficacy	Facilitating conditions	Prior experience		
42	2016	Biswadip	139	Students	Technology mediated learning	ExTAM	USA	PU	PEOU	AU	Individual characteristics	TML system	Learning Outcomes	Facilitating conditions						
43	2016	Ramirez-Anormaliza	131	teachers	E-learning system	ExTAM	Spain	PU	PEOU	BI	AU	Social influence	Perceived enjoyment	Technical support	Self-efficacy	Satisfaction				
44	2015	Kang and Shin	251	Students	E-learning system	ExTAM	South Korea	PU	PEOU	BI	Self-efficacy	Systematic Lecture content	Subjective norm	System accessibility						
45	2015	Ho and Liu	131	Students	E-learning system	ЕхТАМ	China	Nd	PEOU	ATU	I8									

46	2015	Ratna	116	Students	E-learning system	ExTAM	India	PU	PEOU	ATU	BI									
47	2015	Mohammadi	390	Students	E-learning system	ExTAM	Iran	PU	PEOU	BI	AU	Sd	Educational quality	Service quality	Technical system quality	Information quality	Learning assistance			
48	2015	Patricio et.al.	230	Students	E-learning system	ExTAM	Spain and Chile	PU	PEOU	BI	AU	Result Demonstrability	Perceived enjoyment	Perception of external control						
49	2015	Nawaz et.al.	394	teachers	E-learning system	ExTAM	Srilanka	PU	PEOU	ATU	BI	Social influence	Facilitating conditions							
50	2014	Calisir et.al.	546	Blue collar workers	Web based learning system	ЕхТАМ	Turkey	PU	PEOU	ATU	BI	lmage	Perceived content quality	Perceived system quality	Anxiety					

51	2014	Richard	423	Students	E-learning system	ExTAM		PU	PEOU	BI	AU	PS	Social Influence	Perceived enjoyment	Technical support	Self-efficacy					
52	2014	Lee et.al.	326	Students	E-learning system	ExTAM	Indonesia	PU	PEOU	B	Computer self-efficacy	Internet Self-efficacy	Instructor attitude	Learning content	Technology accessibility						
53	2014	Tan and Shao	133		E-learning system	ExTAM	China	PU	PEOU	BI	Subjective norm	Output Quality	Result demonstrability	User friendliness	Environment support						
54	2014	Agudo-Peregrina et.al.	81	Students	E-learning system	ExTAM	Spain	PU	PEOU	BI	AU	Relevance for learning	Perceived interaction	Subjective norm	self-efficacy	Anxiety	Personal innovativeness	Perceived playfulness	Self-reported habit	Facilitating conditions	
55	2014	Wu and Zhang	284	Students	E-learning system	ExTAM	China	PU	PEOU	ATU	BI	Reliability	Accessibility	Accuracy	Completeness	Sociability	Altruism				

56	2014	Ali et.al.	604	Students	E-learning system	ExTAM	England	PU	PEOu	BI	Subjective norm	Self-efficacy							
57	2014	Cheng	225	Students	E-learning system	ExTAM	Taiwan	PU	PEOU	BI	Controllability	Responsiveness	Two-way communication	Personalization	Perceived enjoyment				
58	2014	Inma et.al.	2530	Students	E-learning system	ExTAM	Spain	PU	PEOU	ATU	BI	Resource Quality	Instructor attitude	Presence	Flow				
59	2013	Ali et.al.	695	Students	E-learning system	ExTAM	Beirut	PU	PEOU	BI	AU	Subjective norm	Quality of working life						
09	2013	Lee et.al.	332	Employees	E-learning system	ExTAM	Taiwan	PU	PEOU	ATU	BI	Organizational support	Self-eficacy	Experience	Task equivocality				

61	2013	Rym et.al.	200	Employees	E-learning system	ЕхТАМ	Tunisia	PU	PEOU	ATU	BI	Interpersonal influence	External influence	Content quality	Technical assistance	Self-efficacy			
62	2013	Nabeel	224	Students	E-learning system	ExTAM	Arabia	N	PEOU	ATU	BI	University Support	Self-efficacy						
63	2013	Amer et.al.	107	Students	E-learning system	ТАМ	Jordan	PU	PEOU	ATU	BI								
64	2013	Sa´nchez	226	Students	E-learning system	ExTAM	Huelva	PU	PEOU	ATU	AU	Technical support	Self-efficacy						
65	2013	Cheng	218	Nurses	E-learning system	ExTAM	Taiwan	PU	PEOU	I8	Learner-System interaction	Instructor-learner interaction	Learner-Learner interaction						

99	2013	Motaghian et.al.	115	Instructors	E-learning system	ExTAM	Iran	PU	PEOU	BI	AU	Information quality	System quality	Service quality	Self-efficacy	Subjective norm					
67	2013	Cheung and Vogel	136	Students	E-learning system	ExTAM	China	PU	PEOU	ATU	BI	AU	Sharing	Perceived resource	Compatibility	Subjective norm-Peer	Subjective norm-Media	Subjective norm-Lecturer	Self-efficacy		
89	2012	Alfie	249	Students	E-learning system	ExTAM	Thailand	PU	PEOU	BI	Self-efficacy	Subjective norm	Perceived enjoyment	Extraversion	Conscientiousness	Neuroticism					
69	2012	Cheng	483	Students	E-learning system	ExTAM	Taiwan	PU	PEOU	BI	Course content quality	Course design quality	Support service quality	System functionality	System interactivity	System response	User interface design	Instructor attitude	Perceived enjoyment		
70	2012	Hsia et.al.	233	Employees	E-learning system	ExTAM	Taiwan	PU	PEOU	BI	Locus of control	Self-efficacy									

71	2012	Purnomo and Lee	306	Others	E-learning system	ExTAM	Indonesia	PU	PEOU	BI	Management Support	Self-efficacy	Experience	Anxiety	Compatibility				
72	2012	Chen and Tseng	402	teachers	E-learning system	ExTAM	Taiwan	PU	PEOU	BI	Motivation to use	Anxiety	self-efficacy						
73	2012	park et.al.	408	Employees	E-learning system	ExTAM	Korea	PU	PEOU	PS	Enjoyment	Anxiety	Social influence	Organizational support	Information quality	System quality			
74	2012	Ramayah et.al.	250	Students	E-learning system	ExTAM	Malaysia	BI	PS	Service quality	System quality	Information Quality							
75	2012	Lin and Chen	412	Students	E-learning system	ExTAM	Taiwan	PU	PEOU	B	PS	Course Information quality	Platform information quality	System quality					

79 2011
Learning goal orientation

81	2011	Basheer and Ibrahim	799	Teachers	E-learning system	ExTAM	Malaysia	PU	PEOU	BI	Normative pressure	Experience	Anxiety	Computer knowledge	Management Support					
82	2010	Abdulhameed et.al.	402	Students	E-learning system	ExTAM	Malaysia	PU	PEOU	ATU	I8	Enjoyment	Anxiety	Self-efficacy	Experience					
83	2010	lee	363	Learners	E-learning system	ExTAM	Taiwan	PU	PEOU	ATU	I8	PS	Confirmation	Perceived enjoyment	Concentration	Subjective norm	Perceived behaviour control			
84	2010	Liu et.al.	436	Students	E-learning system	ExTAM	Taiwan	PU	PEOU	BI	Perceived Interaction	Online course design	User interface design	Previous online learning						
85	2010	Jorge et.al.	189	Students	E-learning system	ExTAM	Spain	Πd	PEOU	BI	AU	Perceived enjoyment	Perception of external control							

98	2010	Chen	193	Employees	E-learning system	ExTAM	Taiwan	PU	AU	PS	Information quality	System quality							
87	2010	Ahmad and Samar	340	Learners	E-learning system	ExTAM	UAE	PU	PEOU	E-retention	PS	Design features	Perceived enjoyment						
88	2009	Lee et.al.	250	Students	E-learning system	ExTAM	South Korea	PU	PEOU	I8	Instructor characteristics	Teaching materials	Design of learning contents	Playfulness					
88	2009	Park	628	Students	E-learning system	ExTAM	South Korea	PU	PEOU	ATU	BI	Subjective norm	self-efficacy	System accessibility					
06	2009	Wang and Wang	268	teachers	E-learning system	ExTAM	Taiwan	PU	PEOU	BI	AU	Information quality	System Quality	Service Quality	Subjective norm	Self-efficacy			

91	2009	Akram and Sona	155	Students	E-learning system	ExTAM	Iran	PU	PEOU	BI	Personal innovativeness in IT	Subjective norm	Self-efficacy						
92	2009	Muneer et.al.	470	Students	E-learning system	ExTAM	Jordan	PU	PEOU	BI	Subjective norm	Experience	System interactivity	Self-efficacy	Technical support				
93	2009	Cho et.al.	100	Students	E-learning system	ExTAM	Hongkong	PU	PEOU	BI	PS	Perceived functionality	Perceived user-interface Design	Perceived system support					
94	2009	Sørebø	124	teachers	E-learning system	ExTAM	Norway	PU	BI	PS	Perceived autonomy	Perceived competence	Perceived relatedness	Confirmation	Intrinsic motivation				
95	2008	Roca and Gagne	166	Workers	E-learning system	ЕхТАМ	Others	Πd	PEOU	BI	Perceived Playfulness	Perceived autonomy support	Perceived competence	Perceived relatedness					

96	2008	Chang and Tung	212	Students	E-learning	ExTAM	Taiwan	Πd	PEOU	BI	Compatibility	Perceived system quality	Self-efficacy					
26	2008	Hsia and Tseng	233	Employees	E-learning system	ExTAM	Taiwan	PU	PEOU	BI	Self-efficacy	Perceived flexibility						
86	2008	Allan and Will	152	teachers	E-learning system	ExTAM	Hongkong	PU	PEOU	BI	Subjective norm	Efficacy						
66	2008	Tobing et.al.	314	Students	E-learning system	TAM	Malaysia	PU	PEOU	BI	System adaptability							
100	2008	Sheng et.al.	121	Users	E-learning system	ТАМ	China	Nd	PEOU	18	NA	Perceived enjoyment						

101	2008	Antonio et.al.	225	Students	E-learning	ExTAM	Spain	PU	PEOU	ATU	BI	Self-efficacy							
102	2008	Jaflah and Hamad	155	Students	E-learning	ExTAM	Baharain	PU	PEOU	BI	Subjective norm	Content quality	Self-efficacy						
103	2008	Masoud et.al.	120	Students	E-learning system	ExTAM	Iran	PU	PEOU	I8	Experience	Anxiety	Self-efficacy	Affect	Age				
104	2008	Liao and LU	137	Students	E-learning system	ExTAM	Taiwan	PU	PEOU	BI	Ease of use	Compatibility	Image	Result demonstrability	Relative advantage	Trialability			
105	2008	Tseng and Hsia	204	Employees	E-learning system	ExTAM	Taiwan	Πd	PEOU	BI	Internal locus control	Self-efficacy							

106	2008	Liao and LU	137	Students	E-learning	ExTAM	Taiwan	PEOU	BI	AU	Compatibility	Relative advantage	Trialability	Result demonstrability	Visibility	Image			
107	2008	Lee	1107	Students	E-learning system	ExTAM	Taiwan	PU	PEOU	BI	Internal computing support	Internal computing training	nternal computing accessibility	External computing support	External computing training	External computing			
108	2008	Park et.al.	191	Instructors	E-learning	ЕхТАМ	SU	PU	PEOU	BI	AU	Motivation	Compliance with school policy Internal computing accessibility	Instructional technology	Evaluation of functions				
109	2008	Hsia and Tseng	233	Employees	E-learning	ExTAM	Taiwan	PU	PEOU	BI	Computer self-efficacy	Perceived flexibility							
110	2007	Fu et.al.	451	Students	E-learning	ExTAM	Taiwan	Πd	PEOU	ATU	IB	Perceived enjoyment	Functionality	Interface design	Pedagogic	Community			

111	2007	Hussein et.al.	147	Students	E-learning	ЕхТАМ	Indonesia	PU	PEOU	BI	Computer self-efficacy	Convenience	Instructional design	Technological factors	Instructors Characteristic				
112	2007	Chiu and Chang	289	Students	E-learning	ExTAM	Taiwan	BI	PS	Information quality	System quality	Service quality	System use	Distributive fairness	Procedural fairness	Interactional fairness			
113	2007	Chen et.al.	214	Students	E-learning system	ExTAM	Taiwan	PU	PEOU	BI	AU	Perceive enjoyment	System features	Characteristics of teaching	Self-efficacy				
114	2007	Liaw et.al.	29	Instructors	E-learning system	ExTAM	Taiwan	PU	PEOU	BI	PS	Perceived enjoyment	Self-efficacy	Multimedia instruction					
115	2007	Masrom	198	Students	E-learning system	MAT	Malaysia	Nd	PEOU	ATU	18								

116	2006	Roca et.al.	184	Students	E-Learning	ExTAM	Spain	PU	PEOU	BI	PS	Information quality	Service quality	System quality	Confirmation	Cognitive absorption	Interpersonal influence	External influence	Computer self-efficacy	Internet self-efficacy	
117	2006	lfinedo	72	Students	Web based learning	ExTAM	Finland	PU	PEOU	BI	AU	Technology characteristics	User characteristics								
118	2006	Lee	1085	Students	E-learning system	ExTAM	Taiwan	PU	PEOU	BI	AU	Subjective norm	Content quality	Perceived network externality	Computer self-efficacy	Course attributes	Competing behavioural				
119	2006	WU et.al.	187	Students	E-learning system	ExTAM	Taiwan	PU	BI	PS	Confirmation	Computer self-efficacy									
120	2006	Ong and Lai	156	Students	E-learning	ЕхТАМ	Taiwan	PU	PEOU	18	Computer self-efficacy										

121	2006	Saadé and Kira	114	Students	E-learning	ExTAM	Canada	PU	PEOU	ATU	Affect	Anxiety					
122	2005	Saade and Bahli	102	Students	E-learning	ExTAM	Canada	PU	PEOU	I8	Cognitive absorption						
123	2005	Lee et.al.	544	Students	E-learning	ExTAM	China	PU	PEOU	ATU	BI	Perceived Enjoyment					
124	2004	Liao et.al.	172	Students	E-learning	ExTAM	BI	AU	Performance expectancy	Effort expectancy	Social influence	Facilitating conditions					
125	2004	Ong and Wang	140	Employees	E-learning system	ЕхТАМ	Taiwan	Nd	PEOU	BI	Computer self-efficacy	Perceived credibility					

126	2004	Xu and YU	152	Teachers	Web-based learning	ЕхТАМ	Hongkong	PU	PEOU	ATU	BI	Computer self-efficacy						
127	2003	Yi and Hwang	119	Students	Web-based information	ExTAM	NSA	DΑ	PEOU	IB	AU	Enjoyment	Learning goal orientation	Application specific self-efficacy				
128	2002	Brown	78	Learners	Web-based learning	TAM	Capetown	PU	PEOU	AU	Ease of understanding	Ease of finding	Self-efficacy	Computer anxiety				

Source: Constructed based on literature review

 Table-5 : Path coefficients of the paths considered

		3			,																		
	Path	PENJ->PU	PENJ->PEOU	NA<-XNA	ANX->PEOU	COMPL->PU	COMPL->PEOU	PEOU->PU	PU->ATU	PEOU->ATU	ATU->BI	PU->BI	BI->AU										
Mohammed et.al.	Beta values	0.08	0.137	0.038	-0.152	0.362	0.479	0.373	0.387	0.39	0.273	0.53	0.675										
		NS	S	NS	S	S	S	S	S	S	S	S	S										
	SD	0.05	0.06	90:0	0.07	0.07	0.07	0.06	0.08	0.07	90:0	90.0	90.0										
	Path	SA->PU	SA->PEOU	SA->BI	ANX->PU	ANX->PEOU	ANX->BI	SF->PU	SF->PEOU	SF->BI	IT->PU	IT->PEOU	IT->BI	ST->PU	ST->PEOU	ST->BI	DL->PU	DL->PEOU	DL->BI	PU->BI	PEOU->PU	PEOU->BI	
Andrea	Beta values	-0.05	0.254	0.13	-0.197	-0.424	-0.146	0.107	0.114	0.005	0.062	0.084	0.007	0.204	0.057	0.172	0.211	0.189	0.247	0.324	0.515	0.122	
	Sig	NS	S	S	S	S	S	S	S	NS	NS	NS	NS	S	NS	S	S	S	S	S	S	S	
	SD	0.05	0.04	0.04	0.06	0.05	0.04	0.05	0.04	0.03	90.0	0.05	0.04	0.05	0.04	0.04	0.05	0.04	0.04	0.04	90.0	0.05	
		PU->AU	PEOU->AU																				
Sukainah et.al	Beta values	0.407	0.324																				
	Sig	S	S																				
	SD	60.0	60.0																				
Marzieh	Beta values	ELM->PU	ELM->PEOU	SE->PU	SE->PEOU	PENJ->PU	PENJ->PEOU	PEOU->AU	PU->AU	ELM->AU	SE->AU	PENJ->AU	PEOU->PU										
		0.57	0.51	0.45	0.32	0.51	0.74	0.52	0.55	0.56	0.49	0.39	0.47										
		S	S	S	S	S	S	S	S	S	S	S	S										
	SD	0.1425	0.1283	0.1113	0.0801	0.1275	0.1857	0.3560	0.4620	0.1400	0.1230	0.0971	0.1540										

		0.34	0.49	0.61	0.54	0.39																		
		S	S	S	S	S																		
	SD	60.0	0.08	0.09	0.11	0.11																		
Dimah et.al.	Beta values	SYQ->SAT	SYQ->PU	SYQ->PEOU	IQ->SAT	IQ->PU	IQ->PEOU	SERQ->PS	SERQ->PU	SERQ->PEOU	ESQ->PS	ESQ->PU	ESQ->PEOU	SSQ->PS	SSQ->PU	SSQ->PEOU	LER->PS	LER->PU	LER-> PEOU	INS->PS	INS->PU	INS->PEOU	PS->Benefits	PU->PS
		0.085	0.079	0.043	0.199	0.146	-0.01	0.077	1E-04	-0.042	0.009	0.002	0.143	0.056	0.179	0.125	0.49	0.389	0.352	0.085	0.109	-0.005	0.388	0.277
		S	S	NS	S	S	NS	S	NS	NS	NS	NS	S	S	S	S	S	S	S	S	S	NS	S	S
	SD	0.0394	0.0451	0.0623	0.0418	0.0479	0.0625	0.0262	0.0100	0.0400	0.0265	0.0500	0.0417	0.0295	0.0336	0.0481	0.0413	0.0523	0.0686	0.0298	0.0378	0.0500	0.0436	0.0417
Damijana et.al.	Beta values	ET->PU	F2F->PU	F2F->ET	TA->ET																			
		0.7	0.2	0.4	0.3																			
		S	S	S	S																			
	SD																							
Salloum et.al.	Beta values	SYQ->PU	SYQ->PEOU	CQ->PU	CQ->PEOU	IQ->PU	IQ->PEOU	SE->PU	SE->PEOU	SN->PU	SN->PEOU	PENJ->PU	PENJ-PEOU	SA->PU	SA->PEOU	COMPL->PU	COMPL->PEOU	PEOU->PU	PEOU->ATU	PU->ATU	PEOU->BI	PU->BI	ATU->BI	BI->AU
		-0.01	0.101	0.017	-0.06	0.138	0.154	0.057	0.207	0.012	0.024	-0.2	0.132	0.128	0.158	0.157	-0.03	0.296	0.152	0.521	0.088	0.193	0.342	0.194
		NS	S	NS	NS	S	S	NS	S	NS	NS	S	S	S	S	S	NS	S	S	S	S	S	S	S
	SD	0.0446	0.0404	0.0533	0.0540	0.0588	0.0686	0.0647	0.0676	0.0682	0.0710	0.0751	0.0626	0.0567	0.0558	0.0559	0.0586	0.0573	0.0486	0.0537	0.0471	0.0681	0.0666	0.0556
Flora and Zhang	Beta values	SN->PU	SN->PEOU	EXP->PU	EXP->PEOU	PENJ->PU	PENJ->PEOU	ANX->PU	ANX>PEOU	SE->PU	SE->PEOU	PU->BI	PEOU->BI	PEOU->PU										
		0.25	0.1	-0	0.07	0.01	0.15	0.12	0.23	0-	0.03	0.26	0.15	0.22										
		S	S	NS	S	NS	S	S	S	SN	NS	S	S	S										

011 Rect avalues SD Becta values SD Becta values SD Becta values SD		Waleed et.al.				Marie et.al.				Anastasia and Nikolaos	
RA->PU 0.0318 NS -0.08 SN->PU 0.0638 S 0.01 ATU->BI RA->PU 0.0948 S 0.206 Images->PU 0.0349 NS -0.04 Y->ATU CO->PU 0.14583 S 0.302 QQ->PEQU 0.1147 S 0.0132 Y->BI CO->PEQU 0.13503 S 0.457 FC->PEQU 0.0140 S 0.032 Y->PU TR->PU 0.0310 S 0.457 FC->PEQU 0.0140 S 0.09 PEQU->ATU TR->PU 0.0310 S 0.308 PU->BI 0.0410 S 0.09 PEQU->ATU OB->PU 0.1350 S 0.513 PEQU->BI 0.045 S 0.045 PEQU->BI OB->PU 0.1350 S 0.135 S 0.427 S 0.028 PEQU->BI OB->PU 0.1350 S 0.136 S 0.045 S PEQU->BI PE->PU S		Beta values	SD			Beta values	SD			Beta values	SD
RA->PEQU 0.0948 S 0.206 Images->PU 0.0349 NS -0.04 Y->ATU CO->PEQU 0.14583 S 0.302 OQ->PEQU 0.0147 S 0.032 Y->BI CO->PEQU 0.13503 NS 0.457 FC->PEQU 0.0554 NS 0.08 Y->PEU TR->PEQU 0.04329 NS 0.0450 NS 0.0410 S 0.09 PEQU->ATU TR->PEQU 0.04501 NS 0.131 PEQU->BI 0.0439 NS 0.142 PEQU->ATU COMP->PEQU 0.1313 PEQU->BI 0.0739 NS 0.142 PEQU->ATU COMP->PEQU 0.1313 PEQU->BI 0.0739 NS 0.142 PEQU->PI COMP->PEQU 0.1320 NS 0.142 PEQU->PI NS 0.123 SE->PI PE->PEQU NS NS 0.124 NS 0.124 SE->PI PED->PI NS NS 0.124 NS 0.124 </td <td>0.11</td> <td>RA->PU</td> <td>_</td> <td>NS</td> <td>-0.08</td> <td>SN->PU</td> <td>0.0638</td> <td>S</td> <td>0.15</td> <td>ATU->BI</td> <td>0.07398</td>	0.11	RA->PU	_	NS	-0.08	SN->PU	0.0638	S	0.15	ATU->BI	0.07398
CO->PUO 014583 S 062-PEDU 01147 S 0.03 Y->BI CO->PEDU 013503 S 0.457 FC->PEDU 00534 NS -0.08 Y->PU TR->PU 013503 NS 0.043 FC->NED 0.0400 S 0.09 PEDU->PU TR->PU 0.04329 NS 0.142 PEDU->PU 0.0490 NS 0.049 PEDU->PU OB->PEDU 0.1518 S 0.451 PEDU->PU 0.0739 NS 0.142 PEDU->PU COMP->PEQU 0.1553 S 0.424 PEDU->PU 0.0739 S 0.368 PU->PU PE->PEQU 0.1553 S 0.424 PEDU->PU 0.0730 NS 0.123 SE->PU PE->PEQU NS 0.137 S 0.247 SE->PEQU->PU PE->PEQU NS 0.137 S 0.247 SE->PEQU->PU PEU->PE NS 0.137 S 0.124 SE->PEQU->PU </td <td>0.28</td> <td>RA->PEOU</td> <td>0.09948</td> <td>S</td> <td>0.206</td> <td>Images->PU</td> <td>0.0349</td> <td>SN</td> <td>-0.04</td> <td>Y->ATU</td> <td>0.03785</td>	0.28	RA->PEOU	0.09948	S	0.206	Images->PU	0.0349	SN	-0.04	Y->ATU	0.03785
CO-PEDU 0.13503 S 6457 FC-PEDU 0.0554 NS -0.08 Y-PU TR-PPU 0.0429 NS 0.042 FC-BI 0.0410 S 0.09 PFDU-ATU TR-PPU 0.0912 S 0.308 PU-BI 0.5281 NS 0.04 PEDU-PU OB-PPU 0.1518 S 0.513 PEDU-BI NS 0.142 PEDU-PU OB-PPU 0.15503 S 0.131 NS 0.142 PEDU-PU COMP-PEDU 0.06326 S 0.131 S 0.045 NS 0.142 PEDU-PU PE-PEDU NS NS 0.142 SE-ATU NS 0.143 SE-ATU PE-PEDU NS NS 0.143 S 0.247 SE-ATU PEU-PU NS 0.1480 NS 0.144 SE-PU PEU-PU NS 0.1480 NS 0.144 SE-PU PEU-PU NS NS 0.144 <td>0.01</td> <td>CO->PU</td> <td>0.14583</td> <td>S</td> <td>0.302</td> <td>OQ->PEOU</td> <td>0.1147</td> <td>S</td> <td>0.132</td> <td>Y->BI</td> <td>0.02903</td>	0.01	CO->PU	0.14583	S	0.302	OQ->PEOU	0.1147	S	0.132	Y->BI	0.02903
TR.>PU 0.04329 NS CORB FC.>BI 0.0410 S 0.042 FC.>BI 0.0410 S 0.308 PU.>BI 0.0531 NS 0.142 PEOU->BI OB->PU 0.0536 S 0.513 PEOU->BI 0.0739 NS 0.142 PEOU->BI COMP->PU 0.0536 S 0.513 PEOU->BI 0.0739 NS 0.142 PEOU->BI COMP->PU 0.0536 S 0.457 PEOU->BI 0.0739 NS 0.142 PEOU->PU PE->PU 0.06370 NS 0.136 PEOU->PU NS 0.137 SE->ATU PEU->PU NS 0.137 S 0.247 SE->PEOU->PU PEU->PU NS 0.137 S 0.247 SE->PEOU->PU PEU->PU NS 0.1480 NS 0.124 SE->PEOU->PU PEU->PU NS NS 0.124 SE->PEOU->PU PEU->PU NS NS 0.124 SE->PEOU->PU	0.08	CO->PEOU	0.13503	S	0.457	FC->PEOU	0.0554	SN	-0.08	Y->PU	0.02399
TR->PEOU 0.0301 S 0.308 PU->BI 0.5281 NS 0.91 PEOU->BI OB->PU 0.01518 S 0.513 PEOU->BI 0.0739 NS 0.142 PEOU->PU OB->PEOU 0.06326 S 0.131 BI->AU 0.0539 S 0.368 PU->ATU COMP->PEOU 0.0536 S 0.437 PEOU->PU 0.0496 S 0.108 PU->ATU COMP->PEOU 0.13503 S 0.427 SE->ATU SE->BI PE->PEOU NS 0.137 S 0.247 SE->PEOU PE->PEOU NS 0.137 SE->PEOU SE->PEOU PEU->PU NS 0.1480 NS 0.246 SE->PEOU PEU->PU NS 0.1480 NS 0.124 SE->PEOU PEU->PU NS 0.0701 S 0.246 SCN->PEOU PEU->PU NS NS 0.124 SC->PU PEOU->BI NS NS<	90.0	TR->PU	0.04329	NS	0.082	FC->BI	0.0410	S	0.09	PEOU->ATU	0.01216
OB->PU 0.08->PU 0.01358 S 0.6131 PEOU>PU 0.0739 NS 0.142 PEOU>PU COMP->PEOU 0.06326 S 0.131 BI->AU 0.0539 S 0.368 PU->ATU COMP->PEOU 0.13503 S 0.457 PEOU>PU 0.0496 S 0.108 PU->BI PE->PEOU S 0.457 PEOU>PU 0.0700 NS 0.123 SE->PEOU PE->PEOU S 0.0247 SE->PEOU S 0.247 SE->PEOU PEU->PU S 0.0345 S 0.246 SE->PEOU PEU->PU S 0.071 S 0.246 SE->PEOU PEU->PU S S 0.0247 SE->PEOU PEU->PU S S 0.0349 S 0.246 SCN->PEOU PU-SI S S 0.0349 S 0.034 SON->PEOU PU-SI S S S 0.034 S SA->P	0.03	TR->PEOU	0.09101	S	0.308	PU->BI	0.5281	SN	0.91	PEOU->BI	0.05677
OB->PEOU 0.06326 S 0.131 BI->AU 0.0539 S 0.368 PU->ATU COMP->PU 0.13503 S 0.457 PEOU->PU 0.0496 S 0.108 PU->BI COMP->PEU 0.13503 S 0.457 PEOU->PU 0.0700 NS 0.123 SE->ATU PE->PEOU S S 0.043 S 0.247 SE->PEOU PEU->PU S 0.1480 NS 0.124 SE->PEOU PEU->PU S S 0.0424 SE->PEOU PEU->PU S 0.0430 NS 0.124 SE->PEOU PEU->PU S S 0.0424 SE->PEOU PEOU->BI S 0.0434 S 0.043 SON->PEOU PEOU->BI S S 0.045 SON->PEOU S PEOU->BI S 0.043 S 0.045 SA->PEOU PEOU->BI S S S SA->PEOU	0.07	OB->PU	0.15158	S	0.513	PEOU->BI	0.0739	SN	0.142	PEOU->PU	0.03551
COMP->PU (0.13503) S (0.457) PEOU->PU (0.0496) S (0.123) PU->BI COMP->PEOU S (0.123) SE-ATU SE-ATU PE->PU (0.000) NS (0.137) S (0.247) SE->PU (0.000) PE->PEOU (0.000) NS (0.134) S (0.247) SE->PEOU (0.000) PEO (0.240) NS (0.134) S (0.124) SE->PEOU (0.000) PEO (0.240) NS (0.0000) NS (0.124) SE->PEOU (0.000) PEOU (0.240) NS (0.0000) NS (0.124) SE->PEOU (0.000) PEOU (0.240) NS (0.000) NS (0.000) SON (0.000) PEOU (0.240) NS (0.000) NS (0.000) SA (0.000) PEOU (0.000) NS (0.000) NS (0.000) SA (0.000) PEOU (0.000) NS (0.000) NS (0.000) SA (0.000) PEOU (0.000) NS (0.000) NS (0.000) NS (0.000)	0.04	OB->PEOU	0.06326	S	0.131	BI->AU	0.0539	S	0.368	PU->ATU	0.06806
COMP->PEOU NG 0.0700 NS 0.123 SE->BT PE->PEU 0.1137 S 0.247 SE->BT PE->PEOU 0.0845 S 0.247 SE->BT PEU->PU 0.0845 S 0.244 SE->PEOU PEU->PU 0.01480 NS 0.124 SE->PEOU PEOU->BI 0.0701 S 0.246 SCN->ATU PEOU->BI 0.0349 S 0.246 SON->ATU PEOU->BI 0.0181 S 0.137 SON->PEOU PEOU->BI 0.01678 S 0.137 SON->PEOU PEOU S D 0.01678 S 0.513 SON->PEOU PEOU S D 0.01678 S 0.016 S SA->PEOU PEU S D D 0.0063 S 0.006 SA->PEOU PEU S D D 0.0063 S 0.006 SA->PEOU PEU S D D D D <t< td=""><td>0.17</td><td>COMP->PU</td><td>0.13503</td><td>S</td><td>0.457</td><td>PEOU->PU</td><td>0.0496</td><td>S</td><td>0.108</td><td>PU->BI</td><td>0.04814</td></t<>	0.17	COMP->PU	0.13503	S	0.457	PEOU->PU	0.0496	S	0.108	PU->BI	0.04814
PE->PEOU O.1137 S 0.247 SE->BI PE->PEOU 0.0845 S 0.424 SE->PEOU PEU->PU 0.0845 S 0.424 SE->PEOU PU->BI 0.1480 NS 0.124 SE->PU PU->BI 0.0701 S 0.246 SCN->ATU PEOU->BI 0.0349 S 0.137 SON->PU PEOU->BI S 0.181 S 0.137 SON->PU PEOU->BI S 0.1678 S 0.137 SON->PU PEOU->BI S 0.1678 S 0.137 SON->PU PEOU->BI S 0.1678 S 0.55 SA->PU PEOU->BI S 0.0139 S 0.076 SA->PEOU PEOU->BI S 0.0176 S SA->PEOU PEOU->BI S 0.009 S 0.008 SA->PEOU PEOU-PEU S S 0.009 SA->PEOU S <t< td=""><td>0.19</td><td>COMP->PEOU</td><td></td><td></td><td></td><td></td><td>0.0700</td><td>SN</td><td>0.123</td><td>SE->ATU</td><td>0.05340</td></t<>	0.19	COMP->PEOU					0.0700	SN	0.123	SE->ATU	0.05340
PEL-PEOU 0.0845 S 0.424 SE-PEOU PEU-PU 0.1480 NS 0.124 SE-PU PU-PBI 0.0701 S 0.124 SE-PU PEOU-PBI S 0.0349 S 0.19 SON-PBI PEOU-PBI S 0.0181 S 0.19 SON-PBI PEOU-PBI S 0.0181 S 0.137 SON-PBI PEOU-PBI S 0.1678 S 0.137 SON-PBI PEOU-PBI S 0.1678 S SON-PBI PEOU-PBI S 0.1678 SA-PBI PEOU-PBI S 0.0139 S 0.076 SA-PBI PEOU-PBI S 0.1076 S SA-PBI PEOU-PBI S 0.009 S <t< td=""><td>0.11</td><td>PE->PU</td><td></td><td></td><td></td><td></td><td>0.1137</td><td>S</td><td>0.247</td><td>SE->BI</td><td>0.07694</td></t<>	0.11	PE->PU					0.1137	S	0.247	SE->BI	0.07694
PEU->PU PEU->PU NS 0.1480 NS 0.124 SE->PU PU->BI 0.0701 S 0.246 SON->ATU SON->BI PEOU->BI 0.0349 S 0.19 SON->BI SON->BI PEOU->BI 0.0181 S 0.137 SON->PEOU SON->PEOU PEOU->BI 0.0637 S 0.513 SON->PEOU SON->PEOU PEOU->BI D 0.0637 S 0.513 SON->PEOU PEOU->BI D 0.0139 S 0.55 SA->ATU PEOU->BI D 0.0139 S 0.076 SA->PEOU PEU->BI D D 0.009 S 0.008 SA->PEOU PEU->BI D D 0.009 S 0.008 SA->PEOU	0.28	PE->PEOU					0.0845	S	0.424	SE->PEOU	0.05677
PU->BI PEOU->BI 0.0701 S 0.246 PEOU->BI 0.0349 S 0.19 CALGAS S 0.137 CALGAS S 0.137 CALGAS S 0.137 CALGAS S 0.137 CALGAS S 0.513 CALGAS S 0.513 CALGAS S 0.055 CALGAS S 0.076 CALGAS S 0.006	0.59	PEU->PU					0.1480	NS	0.124	SE->PU	0.08326
PEOU->BI 0.0349 S 0.19 0.0181 S 0.137 0.0182 S 0.137 0.0183 S 0.513 0.0184 S 0.513 0.0185 S 0.076 0.0186 S 0.006 0.0186 S 0.008 0.008 S 0.008	0.18	PU->BI					0.0701	S	0.246	SON->ATU	
S 0.137 S 0.513 S 0.076 S 0.302 S 0.008	0.54	PEOU->BI					0.0349	S	0.19	SON->BI	
\$ 0.513 \$ 0.55 \$ 0.076 \$ 0.302 \$ 0.008							0.0181	S	0.137	SON->PEOU	
\$ 0.055 \$ 0.076 \$ 0.302 \$ 0.008							0.1678	S	0.513	SON->PU	
\$ 0.076 \$ 0.302 \$ 0.008							0.0637	S	0.55	SA->ATU	
S 0.302 S 0.008							0.0139	S	0.076	SA->BI	
\$ 0.008							0.1076	S	0.302	SA->PEOU	
							6000.0	S	0.008	SA->PU	

		0.2	0.7	0.4	0.7	0	0.5	0.8								
		S	S	S	S	NS	S	S								
	SD	0.1115	0.3586	0.1793	0.3489	0.0194	0.2471	0.4022								
Wang et.al.	Beta values	SE->BI	PENJ->BI	PEOU->BI	PU->BI	UP->BI										
		0.39	0.31	0.1	0.07	90.0										
		S	S	NS	NS	NS										
	SD	0.08	0.08	0.09	0.09	0.08										
Rizwan et.al	Beta values	PEOU->ATU	SE->PEOU	SE->ATU	PU->ATU	ATU->BI										
		0.72	0.41	0.44	0.78	0.94										,
		S	S	S	S	S										
	SD	0.0641	0.0878	0.0926	0.0604	0.0538										,
Abinew et.al.	Beta values	BI->AU	Incentive->AU	PEOU->BI	PU->BI	MSUP->AU	Training->AU									
		0.19	-0.09	0.251	0.273	0.307	0.259									
		S	NS	S	S	S	S									
	SD	0.0393	0.0724	0.0458	0.0618	0.0526	0.0522									

		S	S	S	S	S	NS	S	S	S							
	SD	0.1363	0.1509	0.1606	0.2239	0.3553	0.0531	0.1606	0.0827	0.0827							
Ali et.al.	Beta values	WLQ->BI	FC->AU	BI->AU	PEOU->BI	PU->BI	EXP->BI	SN->BI	SE->AU	0							
		0.62	0.53	0.4	0.21	0.11	0.03	0.01	0.02								
		S	S	S	S	S	S	S	S								
	SD	0.2370	0.2020	0.1528	0.1000	0.0659	0.0165	0.0065	0.0124								
Vululleh	Beta values	PU->BI	PEOU->BI	SI->BI	QL->BI	BI->AU											
		0.13	0.19	0.11	0.41	0.55											
		S	S	S	S	S											
	SD	0.0505	0.0569	0.0331	0.1227	0.1644											
Angela et.al	Beta values	SE->PEOU	SE->PU	SN->PEOU	SN->PU	EXP->PEOU	EXP->PU	PEOU->PU	PEOU->BI	PU->BI							
		0.468	-0.03	0.237	0.079	0.241	0.028	0.799	0.034	0.959							
		S	NS	S	NS	S	NS	S	NS	S							
	SD	0.06628	0.05433	0.06027	0.04811	0.06061	0.04904	0.08080	0.08673	0.11417							
Hadeel et.al.	Beta values	PEOU->Acceptance	PU->Acceptance	SERQ->PEOU	Acceptance->Bl	EXP->PU		_	_								
		0.34	0.54	0.42	0.65	0.46											
		S	S	S	S	S											

	SD	0.0495	0.0576	0.0660	0.0604	0.0719															
.al.	es						D(n	TU	Ď											
Aamer et.al.	Beta values	RD->PU	SN->PU	PENJ->PEOU	SE->PEOU	PEXC->PEOU	SA->PEOU	PU->ATU	PEOU->ATU	PEOU->PU	PU->BI	ATU->BI									
		0.38	0.28	0.33	0.03	0.35	0.21	0.11	1.06	0.11	0.34	0.55									
		S	S	S	NS	S	S	NS	S	NS	S	S									
	SD	0.11427	0.13641	0.09722	0.01485	0.16797	0.06312	0.05568	0.31737	0.06046	0.10140	0.16332									
Qasis et.al.	Beta values	PEOU->PS	PU->PS	SYQ->PS	IQ->PS	SE->PS															
		0.2	0.18	0.16	0.18	0.25															
		S	S	S	S	S															
	SD	0.05	90.0	90.0	90.0	90.0															
Adhichipta	Beta values	PEOU->PU	PEOU->ATU	PU->ATU	PU->BI	ATU->BI	SN->PU	SN->BI	EXP->PU	EXP->PEOU	SE->PU	SE->PEOU	SINT->PU	SINT->PEOU	TS->PU	TS->PEOU	SD->PU	SD->PEOU			
		0.349	0.389	0.674	-0.05	0.647	0.658	98:0	-0.13	0.312	-0.02	0.53	-0.02	0.003	0.174	0.053	-0.07	0.134			
		S	S	S	NS	S	S	S	NS	S	NS	S	NS	SN	S	NS	NS	NS			
	SD	0.14963	0.11484	0.19898	0.25856	0.20572	0.19425	0.16921	0.08605	0.09211	0.16016	0.15646	0.08000	0.09189	0.08224	0.08847	0.08092	0.08311			
Liu et.al.	Beta values	PU->ATU	PU->BI	PEOU->ATU	PEOU->BI	PEOU->PU	ATU->BI	SI->PU	SI->ATU	SI->BI	CT->ATU	CT->BI									
		0.436	0.049	0.261	0-	0.681	0.351	0.247	0.167	-0.02	0.243	-0.11									
		S	NS	S	SN	S	S	S	S	NS	S	NS									
	SD	0.12878	0.17512	0.14459	0.15932	0.20115	0.14808	0.07857	0.07980	0.13221	0.09186	0.15790									

Nisreen et.al	Beta values	IQ->AU	IQ->SYQ	IQ->BI	IQ->PU	TS->IQ	TS->PEOU	TS->BI	TS->AU	SYQ->AU	SYQ->BI	SN->BI	SE->BI	PEOU->PU	PEOU->BI	PU->BI	BI->AU			
		0.046	0.589	0.178	0.213	0.471	0.307	-0.01	0.208	0.01	0.154	0.135	0.2	0.288	0.275	0.295	0.355			
		NS	S	S	S	S	S	NS	S	NS	S	NS	S	S	S	S	S			
	SD	0.02436	0.17563	0.06770	0.08101	0.14044	0.09154	-0.00303	0.07911	0.00530	0.07466	0.07151	0.07607	0.08587	0.10459	0.08796	0.17297			
Nadia et.al.	Beta values	EOU->PU	LOI->PU	SERQ->PU	Inter Quality-															
		0.2	0.2	0.2	0.4															
		S	S	S	S															
	SD	0.1	0.1	0.1	0.1															
lbrahim	Beta values	CH->PU	SE->PU	SE->PEOU	PEOU->PU	PU->BI	PEOU->BI													
		0.4	0.2	8.0	0.2	0.2	9.0													
		NS	NS	S	NS	SN	S													
	SD	0.23112	0.12607	0.36012	0.12607	0.12607	0.26409													
Manuel	Beta values	ICE->PEOU	ICE->BI	PU->BI	SMI->PU	SMI->PU	PEOU->PU	PEOU->BI	SINT->PU	SU->QWL	QWL->BI	IMI->PEOU	IMI->PQWL							
		0.52	0.92	0.89	0.62	0.97	0.46	0.46	0.64	0.55	0.57	0.43	0.57							
		S	S	S	S	S	S	S	S	NS	NS	S	NS							
	SD	0.198076	0.448489	0.340430	0.237385	0.471326	0.174795	0.175940	0.243492	0.601180	0.353356	0.164490	0.483251							

		0.437	0.213	0.025	0.181	0.496	0.321	0.239	-0.19	-0.15	0.026	0.246	0.241	0.205	0.046					
		S	S	NS	S	S	S	S	S	S	NS	S	S	S	NS					
	SD	0.13107	0.08132	0.06869	0.06910	0.14877	0.09628	0.11616	0.09283	0.07339	0.01813	0.09392	0.09201	0.14824	0.06407					
Faria and Mariam	Beta values	SE->PEOU	SE->PU	EXP->PEOU	PENJ->PEOU	ANX->PEOU	OA->PEOU	SC->PEOU	SC->PU	NS -> PU	PEOU->PU	PEOU->ATU	PU->ATU	PU->BI	ATU->BI					
		0.135	-0.02	-0.11	0.209	0.006	-0.09	0.786	-1.18	0.023	2.249	0.627	0.174	-0.69	2.169					
		S	NS	S	S	NS	NS	S	S	NS	S	S	S	S	S					
	SD	0.06864	0.12855	0.04406	0.05311	0.01843	0.05502	0.19972	0.41915	0.05572	0.57146	0.15932	0.06625	0.17558	0.55114					
Marija	Beta values	PU->ATU	PEOU->ATU	E-learning design->ATU																
		9:0	0.2	0.1																
		S	S	S																
	SD	0.17286	0.06557	0.04847																
Willie et.al.	Beta values	PU->BI	PEOU->BI	PINT->BI	Course design-	Course design-	Course design-	Ul design-	Ul design-	EXP->PU	EXP->PEOU	EXP->BI	PEOU->PU	PEOU->PINT						
		0.21	0.203	0.179	0.083	0.226	0.334	0.405	-0.03	-0.05	0.078	0.076	0.486	0.529						

	Sanjiv				Priyanto et.al.				Tsai et.al.				Ahmed and Patrick
	Beta values	SD			Beta values	SD			Beta values	SD			Beta values
0.5	PU->ATU	0.06750	S	0.18	SENV->PU	0.0409	S	0.259	IQ->PU	0.06405	S	0.49	PU->PS
0.4	PEOU->ATU	0.07258	S	0.16	SENV->BI	0.0525	S	0.241	IQ->PEOU	0.06949	S	0.34	PEOU->PS
0.4	SE->PEOU	0.06770	S	9.0	PEOU->PU	0.0136	S	0.089	SYQ->PU	0.12587	S	0.42	PEOU->PU
0.3	SN->PEOU	0.07066	S	0.59	FC->PEOU	0.1362	S	0.286	SYQ->PEOU	0.17516	S	0.59	BELSSE->PEOU
0.3	SA->PEOU	0.09464	S	0.21	FC->AU	0.0426	NS	0.03	SERQ->PU	0.07294	S	0.17	BELSSE->PU
0.5	ATU->BI	0.09158	S	0.35	PU->BI	0.0436	S	-0.28	SERQ->PEOU	0.06637	S	0.44	PU->BI
		0.08930	S	0.28	PEOU->BI	0.0340	S	0.535	PEOU->PU	0.06862	S	0.36	PEOU->BI
		0.09468	S	0.34	BI->AU	0.0484	S	0.279	PENJ->PEOU	0.15764	S	0.53	PEOU->PU
						0.0337	S	0.524	PU->ATU	0.17516	S	0.59	BELSSE->PEOU
						0.0342	S	0.183	PEOU->ATU		S	0.17	BELSSE->PU
						0.0577	S	0.444	ATU->BI				
2						0.0548	S	0.352	PU->BI				
						0.0381	S	0.25	PENJ->ATU				
		_		_				- 					

		S	S	S	S	NS	S	S	S	S	S	S	NS	S	NS					
		80	8	1	8		8	2	9	4	2	1		9						
	SD	0.14258	0.17248	0.16871	0.07248	0.11203	0.10388	0.11975	0.07696	0.11754	0.13145	0.10871	0.17834	0.09886	0.12881					
iza																				
Anormal	Beta values	SI->PU	PENJ->PU	PENJ->PEOU	TS->PU	TS->PEOU	SE->PU	SE->PEOU	PU->S	PU->BI	PEOU->PU	PEOU->BI	BI->AU	PS->AU						
Ramirez-Anormaliza	Beta	-IS	PEN	PENJ-	-ST	<-ST	SE-	SE->	PL	PU	PEOI	PEO	-IB	PS-						
~		0.2	0.5	0.5				0.4	6:0	0.5	0.3	9.0	9:0							
) S) S	S) s) S) S	S) S) s							
				01							0,									
	SD	0.09159	0.13536	0.13241				0.12064	0.25600	0.15595	0.15425	0.10593	0.18538							
ij)))							
Kang and Shin	Beta values	SE->BI	SE->PU	SE->PEOU	SLC->PU	SLC->PEOU	SN->PU	SN->PEOU	SA->PU	SA->PEOU	SA->BI	PEOU->PU	PEOU->BI	PU->BI						
Kang	Bet	01	S	SE	IS	SLC	S	NS	S	SA	01	PE	PE	ъ.						
		0.64	0.19	0-	-0.2	0.04	0.74	0.63	0.08	0.28	0.21	0.21	0.29	-0.1						
		S	S	NS	NS	NS	S	S	NS	S	S	NS	S	NS						
		661	969	969	782	397	698	517	780	345	195	281	531	918						
	SD	0.08499	0.09596	0.08696	0.08287	0.06897	0.14369	0.0551	0.06780	0.05945	0.06195	0.12281	0.08631	0.0691						
Ho and Liu	Beta values	PEOU->PU	PU->ATU	ATU->BI	PEOU->ATU															
Но а	Beta	PEOU	PU-	ATL	PEOU															
		0.5	0.5	6.0	0.4															
		S	S	S	S															
	SD	0.19986	0.18854	0.32429	0.16215															
		0.1	0.1	0.3	0.1															

		69:0	0.47	0.5	0.72	0.78	0.68	0.4	0.53	0.38											
		S	S	S	S	S	S	S	S	S											
	SD	0.06321	0.06912	0.07220	0.07925	0.06709	0.09595	0.12382	0.12639	0.13801											
Mohammadi	Beta values	EQ->PS	EQ->BI	SERQ->PS	SERQ->BI	SYQ->PS	SYQ->BI	IQ->PS	IQ->BI	PEOU->BI	AU->LA	PU->BI	PEOU->PU	PS->LA	PS->AU	BI->AU	PS->BI				
		0.3	0.1	0.2	0.2	0.3	0.2	0.3	0.1	0.1	0.4	0.5	0.2	0.3	0.2	0.8	0.5				
		S	NS	S	S	S	S	S	S	NS	S	S	S	S	S	S	S				
	SD	0.09904	0.03033	0.07999	0.05977	0.11047	0.06874	0.11047	0.05333	0.03639	0.12852	0.15541	0.04782	0.10162	0.05380	0.24807	0.15541				
Patricio et.al.	Beta values	RD->PU	PENJ->PEOU	PEXC->PEOU	PEOU->PU	PU->BI	PEOU->BI	BI->AU													
		0.3	0.2	9.0	0.3	0.3	0.3	0.2													
		S	S	S	S	S	S	S													
	SD	0.09809	0.04756	0.16943	0.09215	0.08918	0.08620	0.05351													
Nawaz et.al	Beta values	PU->ATU	PEOU->ATU	SI->ATU	FC->ATU																
		0.714	0.189	-0.01	0.278																
		S	S	NS	S																
	SD	0.04	0.03	0.03	0.05																

		Tan and Shao				Lee et.al.				Richard			
		Beta values	SD			Beta values	SD			Beta values	SD		
S	0.44	SN->PU	0.03031	NS	-0.1	SE->PU	0.04954	S	0.1	SI->PU	0.31751	S	1.06
S	0.37	OQ->PU	0.08057	S	0.27	SE->PEOU	0.10766	S	0.4	PE->PU	0.24862	S	0.83
NS	-0.22	RD->PU	0.07759	S	0.16	ISE->PU	0.09570	S	0.3	PE->PEOU	0.07189	S	-0.2
S	0.35	UF->PU	0.06304	S	0.13	ISE->PEOU	0.06280	S	0.2	SE->PU	0.09286	S	0.31
S	0.32	ES->PU	0.06062	NS	0.1	ISTS->PU	0.18242	S	9.0	SE->PEOU	0.11682	S	0.39
S	0.48	PU->BI	0.11041	S	0.37	LCONT->PU	0.27812	S	6:0	PU->PS	0.22465	S	0.75
S	0.25	PEOU->BI	0.11937	S	0.4	LCONT->PEOU	0.18541	S	9.0	PU->BI			
S	0.21	PEOU->PU	0.06789	S	0.14	TECHA->PEOU	0.10168	S	34	PEOU->BI			
			0.15518	S	0.52	PU->BI	0.08374	S	0.3	PEOU->PU			
			0.10445	S	0.35	PEOU->BI	0.17644	S	9:0	BI->AU			
			0.10146	S	0.34	PEOU->PU	0.11051	S	0.3	PS->AU			
		-											

	SD	0.065036	0.060843		0.132680	0.132674	0.159001	0.042161	0.077256											
Agudo-Peregrina et.al.	Beta values	RL->PU	PINT->PU	SN->PU	SE->PEOU	ANX->PEOU	PIN->PEOU	PPLAY->PEOU	PU->BI	PEOU->BI	PEOU->PU	FC->AU	BI->AU	SRH->AU	PINT->BI	SN->BI				
Agudo	В				01	AI	Ь	ЬР		"										
		0.48	0.2	0.08	0.15	-0.1	0.42	0.01	0.31	-0.2	0.28	-0.2	0.03	0.85	0.27	0.26				
		S	S	SN	SN	SN	S	SN	S	NS	S	SN	SN	S	S	S				
	QS	0.13916447	0.11653816	0.04807332	0.09013748	0.03605499	0.12176891	0.00600917	0.14848332	0.09013748	0.104579	0.08621612	0.0180275	0.24643709	0.12932418	0.09710907				
Wu and Zhang	Beta values	RE->PU	RE->PEOU	SA->PEOU	SA->PU	ACCU->PU	COMPlete->PU	SON->PU	SON->ATU	ALT->ATU	PU->ATU	PEOU->ATU	PEOU->PU	PU->BI						
		0.191	0.279	-0.09	0.346	0.264	0.414	0.293	-0.08	0.148	0.631	0.177	0.653	0.581						
		S	S	NS	S	S	S	S	NS	NS	S	S	S	S						
	SD	0.09257	0.08314	0.05514	0.10311	0.12795	0.12337	0.08731	0.04848	0.07837	0.18803	0.08579	0.19459	0.17313						
Ali et.al.	Beta values	PEOU->BI	PU->BI	SN->BI	SE->BI															
		0.2	0.4	0.2	0.1															
		S	S	S	S															

a et.al.	0.2		J->ATU 0.14370 S 0.47	0.14370 S 0.12029 S	0.14622 S	0.14622 S 0.15266 S	0.12029 S 0.14622 S 0.15266 S 0.12829 S	0.12029 S 0.14622 S 0.15266 S 0.12829 S 0.24406 S	0.14622 S 0.15266 S 0.12829 S 0.12829 S 0.24406 S	0.14622 S 0.15029 S 0.14622 S 0.15266 S 0.12829 S 0.24406 S 0.17877 S	0.14370 S 0.12029 S 0.14622 S 0.15266 S 0.12829 S 0.24406 S 0.17877 S 0.10403 S	0.14370 S 0.12029 S 0.14622 S 0.15266 S 0.12829 S 0.24406 S 0.24406 S 0.17877 S 0.10403 S 0.10403 S	0.14370 S 0.12029 S 0.14622 S 0.15266 S 0.12829 S 0.24406 S 0.17877 S 0.17877 S 0.10403 S 0.10097 S	0.14370 S 0.12029 S 0.14622 S 0.15266 S 0.12829 S 0.24406 S 0.17877 S 0.10403 S 0.10403 S 0.10315 S	0.12029 S 0.14622 S 0.14622 S 0.15266 S 0.12829 S 0.24406 S 0.17877 S 0.10403 S 0.10403 S 0.07604 S 0.07604 S 0.005273 S	0.14370 S 0.12029 S 0.14622 S 0.15266 S 0.12829 S 0.24406 S 0.17877 S 0.10403 S 0.10097 S 0.10315 S 0.05273 S 0.09329 S	0.14370 S 0.12029 S 0.14622 S 0.15266 S 0.12829 S 0.24406 S 0.17877 S 0.10403 S 0.10403 S 0.07604 S 0.07604 S 0.07604 S 0.07604 S 0.07604 S 0.009329 S	0.14370 S 0.12029 S 0.14622 S 0.15266 S 0.12829 S 0.24406 S 0.17877 S 0.10403 S 0.1007604 S 0.07604 S 0.07604 S 0.07604 S 0.07604 S 0.07604 S 0.07606 S	0.14370 S 0.12029 S 0.14622 S 0.15266 S 0.12829 S 0.24406 S 0.17877 S 0.10403 S 0.10403 S 0.10315 S 0.07604 S 0.07604 S 0.07604 S 0.07604 S 0.07604 S 0.07606 S	0.14370 S 0.12029 S 0.14622 S 0.15266 S 0.12829 S 0.24406 S 0.17877 S 0.10403 S 0.10403 S 0.07604 S 0.07604 S 0.07604 S 0.07604 S 0.09329 S 0.09329 S 0.09329 S 0.04954 S	0.14370 S 0.12029 S 0.14622 S 0.15266 S 0.12829 S 0.24406 S 0.17877 S 0.10403 S 0.07604 S 0.07604 S 0.00329 S 0.09329 S 0.09329 S 0.04954 S 0.04954 S	0.14370 S 0.12029 S 0.14622 S 0.15266 S 0.12829 S 0.24406 S 0.12829 S 0.12829 S 0.10403 S 0.10403 S 0.07604 S 0.07604 S 0.09329 S 0.09329 S 0.09329 S 0.04954 S	0.14370 S 0.12029 S 0.14622 S 0.15266 S 0.12829 S 0.24406 S 0.17877 S 0.10403 S 0.07604 S 0.07604 S 0.07604 S 0.07604 S 0.07607 S 0.09329 S 0.09329 S 0.09329 S 0.04954 S 0.04954 S
Inma et.al. Beta values	0.87 ATU->BI	0.14 PEOU->ATU		0.66 PU->ATU												- 							
)2 S)2 S)2 S																			
All et.al. Beta values SD		PU->BI 0.02		SIN->BI 0.02																			
All e Beta v	0.19 PEOU	0.14 PU-:																					
	S 0.1	S 0.1	S 0.11		S 0.4																		
SD	0.058123	0.042843	0.034155	122274	U.T.3.3.24	0.174669	0.174669	0.174669	0.174669	0.174669	0.174669	0.174669	0.174669	0.174669	0.174669	0.174669	0.174669	0.174669	0.174669	0.174669	0.174669	0.174669	0.174669
Lee et.al. Beta values	OS->PU	OS->PEOU	SE->PU	SE->PEOU		EXP->PU	EXP->PU EXP->PEOU	EXP->PU EXP->PEOU TE->PU	EXP->PU EXP->PEOU TE->PU	EXP->PU EXP->PEOU TE->PU TE->PU PU->ATU	EXP->PU EXP->PEOU TE->PU TE->PEOU PU->ATU	EXP->PU EXP->PEOU TE->PU TE->PEOU PEOU->PU	EXP->PU TE->PU TE->PEOU PU->ATU PEOU->PU ATUBI	EXP->PU TE->PU TE->PU TE->PU PU->ATU PEOU->PU ATU->BI	EXP->PU EXP->PEOU TE->PEOU PU->ATU PEOU->ATU PEOU->PU ATU->BI PU->BI	EXP->PU TE->PEOU TE->PEOU PEOU->ATU PEOU->BI PU->BI	EXP->PU TE->PU TE->PU PU->ATU PEOU->PU ATU->BI PU->BI	EXP->PU EXP->PEOU TE->PU PU->ATU PEOU->ATU PEOU->PU ATU->BI PU->BI	EXP->PU TE->PU TE->PEOU PEOU->ATU PEOU->BI PU->BI	EXP->PU TE->PU TE->PU PU->ATU PEOU->PU ATU->BI PU->BI	EXP->PU EXP->PEOU TE->PU PU->ATU PEOU->ATU PEOU->BI PU->BI	EXP->PU TE->PU TE->PU PEOU->ATU PEOU->BI PU->BI	EXP->PU TE->PU TE->PU TE->PU PU->ATU PEOU->PU ATU->BI PU->BI
	0.438	0.343	-0.07	0.413		0.291	0.291	0.291 0.149 0.161	0.291 0.149 0.161 -0.05	0.291 0.149 0.161 -0.05	0.291 0.149 0.161 -0.05 0.137	0.291 0.149 0.161 -0.05 0.137 -0.24 0.304	0.291 0.149 0.161 -0.05 0.137 -0.24 0.304	0.291 0.149 0.161 -0.05 0.137 -0.24 0.304 -0.17	0.291 0.149 0.161 -0.05 0.137 -0.24 0.304 -0.17	0.291 0.149 0.161 -0.05 0.137 -0.24 0.304 -0.17	0.291 0.149 0.161 -0.05 0.137 -0.24 0.304 -0.17	0.291 0.149 0.161 -0.05 0.304 -0.17 0.708	0.291 0.149 0.161 -0.05 0.137 -0.24 0.304 -0.17	0.291 0.149 0.161 -0.05 0.137 -0.24 0.304 -0.17 0.708	0.291 0.149 0.161 -0.05 0.304 -0.17 0.708	0.291 0.149 0.161 -0.05 0.304 -0.17 0.708	0.291 0.149 0.161 -0.05 0.137 -0.24 0.304 -0.17
	S	S	NS	S		S	S S	v v v	N N N N	s s s s	v v v S S v	N N N S N N N	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	v v v Z Z v v v v	v v v Z Z v v v v	\(\times \) \(\t	v v v z z v v v v	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~ ~ ~ ~ Z Z ~ ~ ~ ~ ~	v v v z z v v v	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	v v v z z v v v v
SD	0.16669	0.13054	0.04304	0.15718		0.11075	0.11075	0.11075 0.05671 0.07808	0.11075 0.05671 0.07808 0.02971	0.11075 0.05671 0.07808 0.02971 0.08306	0.11075 0.05671 0.07808 0.02971 0.08306 0.09058	0.11075 0.05671 0.07808 0.02971 0.08306 0.09058	0.11075 0.05671 0.07808 0.02971 0.08306 0.09058 0.11569	0.11075 0.05671 0.07808 0.02971 0.08306 0.09058 0.11569 0.06279	0.11075 0.05671 0.07808 0.02971 0.08306 0.09058 0.11569 0.06279	0.11075 0.05671 0.07808 0.02971 0.08306 0.09058 0.11569 0.06279	0.11075 0.05671 0.07808 0.02971 0.08306 0.09058 0.11569 0.06279 0.26945	0.11075 0.05671 0.07808 0.02971 0.08306 0.09058 0.11569 0.06279 0.26945	0.11075 0.05671 0.07808 0.02971 0.08306 0.09058 0.11569 0.06279 0.26945	0.11075 0.05671 0.07808 0.02971 0.08306 0.09058 0.11569 0.06279 0.26945	0.11075 0.05671 0.07808 0.08306 0.09058 0.11569 0.06279 0.26945	0.11075 0.05671 0.07808 0.02971 0.08306 0.09058 0.11569 0.06279 0.26945	0.11075 0.05671 0.07808 0.08306 0.09058 0.11569 0.06279 0.26945

	SD	0.04	0.04	0.04	0.04	0.04	0.02	0.14	0.07	0.12	0.14	0.25	0.04	90.0					
Nabeel	Beta values	US->PU	US->PEOU	SE->PU	SE->PEOU	PU->ATU	PEOU->ATU	DEOU->PU	ATU->BI	PU->BI									
		0.39	0.24	0.39	0.23	0.28	0.28	0.38	0.3	0.34									
		S	S	S	S	S	S	S	S	S									
	SD	0.14648	0.08955	0.14685	0.08614	0.10663	0.10625	0.14230	0.11384	0.12712									
Amer et.al.	Beta values	PU->BI	PU->ATU	PEOU->PU	PEOU->ATU	ATU->BI													
		0.27	0.46	0.5	0.34	0.33													
		S	NS	S	S	NS													
	SD	0.12	0.19	0.12	90.0	54													
Sa´nchez et.al.	Beta values	TS->ATU	PU->ATU	PEOU->ATU	PEOU->PU	ATU->AU													
		0.1	9.0	0.4	9.0	0.1													
		NS	S	S	S	S													
	SD	0.057692	0.089141	0.078351	0.089623	0.184211													
Cheng	Beta values	LSI->PU	LSI->PEOU	LSI->Flow	ILI->PU	ILI->PEOU	ILI->Flow	Flow->PU	Flow->PEOU	PEOU->PU	Flow->BI	PU->BI	PEOU->BI						
		0.22	0.15	0.18	0.31	0.38	0.23	0.4	0.18	0.34	0.15	0.43	0.19						
		S	S	S	S	S	S	S	S	S	S	S	S						

			Alfie				Cheung and Vogel				Motaghian et.al.
Beta	Beta	Beta	Beta values	SD			Beta values	SD			Beta values
S 0.303 SE->PEOU		SE->F	EOU	0.07668	S	0.24	Sharing->PU	0.08943	S	0.22	IQ->PU
S 0.438 SE->PENJ		SE->	PENJ	0.06512	S	0.28	Sharing->ATU	0.06849	S	0.15	IQ->PEOU
S 0.186 EXTR->PEOU		EXTR->	PEOU	0.08834	S	0.25	Sharing->Bl	0.07576	NS	0.05	IQ->BI
S 0.186 EXTR->PENJ		EXTR->	PENJ	0.10394	S	0.29	Sharing->AU	0.09836	NS	90.0	SYQ->PU
S -0.3 CONSC->PENJ		CONSC-	> PENJ	0.07485	S	0.25	PU->ATU	0.07692	SN	90.0	SYQ->PEOU
S 0.224 NEU->SN		NEU->	NS	0.09192	S	0.33	PEOU->ATU	0.07634	S	0.2	SYQ->BI
S 0.098 CONSC->PU		CONSC-	>PU	0.08483	S	0.52	PEOU->PU	0.11538	SN	-0.03	SERQ->PU
S 0.223 CONSC->SN		CONSC-	NS <	0.08295	S	0.18	PRE->PEOU	0.08039	S	0.25	SERQ->PEOU
S 0.394 PU->BI		PU->E	31	0.07681	S	0.51	COMPA->PEOU	0.08537	NS	-0.14	SERQ->BI
S 0.195 PEOU->PENJ		PEOU->F	ENJ	0.06612	S	0.16	COMPA->ATU	0.07740	S	9.0	PU->BI
S 0.634 PEOU->PU		PEOU->	PU	0.18530	S	0.58	ATU->BI	0.10288	S	0.25	PEOU->BI
S 0.116 PEOU->BI		PEOU->	BI	0.25439	S	0.58	Sub_Peer->Bl	0.12871	SN	0.13	PEOU->PU
S 0.472 SN->BI		SN->B	_	0.08696	NS	-0.1	Sub_Media->BI	0.10954	S	0.31	SN->PU
S 0.149 SN->PU		SN->PI		0.05607	NS	90.0	Sub_LECT->BI	0.07985	S	0.21	SN->PEOU
				0.09091	S	0.2	SE->BI	0.02500	NS	0	SN->BI
				0.10290	S	0.39	BI->AU	0.08696	S	0.4	BI->AU
								0.07209	NS	0.04	SE->PU
								0.10526	S	0.39	SE->PEOU
								0.11111	SN	0.02	SE->BI
-	=		-	-	•	-	-	_	_	_	=

		S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S
	SD	0.03471	0.03771	0.03822	0.03971	0.03515	0.03936	0.03474	0.03765	0.03639	0.03881	0.03983	0.04455	0.03240	0.03409	0.03782	0.03701	0.03301	0.03634	0.04245	0.04310	0.03995	0.04358	0.04153
Hsia et.al.	Beta values	LOC->PU	LOC->PEOU	PU->BI	SE->BI	SE->PEOU	PEOU->BI																	
		0.3	0.2	0.4	6.0	0.2	0.1																	
		S	S	S	S	S	S																	
	SD	0.15009	0.10652	0.20819	0.13072	0.08231	0.06294																	
Purnomo and Lee	Beta values	MS->PU	MS->PEOU	SE->PU	SE->PEOU	EXP->PU	EXP->PEOU	ANX->PU	ANX->PEOU	COPA->PEOU	COPA->PU	PU->BI	PEOU->BI	PEOU->PU										
		0.244	0.317	0.075	290'0	0.259	0.363	-0.19	-0.13	0.261	0.372	968.0	80'0	0.286										
		S	S	NS	SN	S	S	S	NS	S	S	S	SN	S										
	SD	0.07277	0.09454	0.04546	0.04061	0.07724	0.10826	0.07341	0.06206	0.07784	0.11094	0.11810	0.04849	0.10879										
Chen and Tseng	Beta values	MTU->PU	MTU->PEOU	ANX->PU	ANX->PEOU	SE->PU	SE->PEOU	PU->BI	PEOU->BI	PEOU->PU														
		0.35	0.31	0.01	-0.5	0.13	0.18	0.58	0.25	0.28														
		S	S	NS	S	S	S	S	S	S														

94

SD Annioles SD Bela values SD Bela values SD Bela values SD Bela values SD Decension values SD COG-PND G00606 S COG SVQ-PPS G004218 S G0 COG-PND G00606 S COG SVQ-PPS G004218 S G0 SVQ-PPS G006078 S G0 SVQ-PPS G0 SVQ-PPS G0 SVQ-PPS S G0 S				Lee et.al.				Lin and Chen				Ramayah et.al.			
NS 0.04 OS->FOLD O.00837 S 0.21 O.0Q->PUO O.00606 S 0.02 O.009-YE O.006420 S O.029 O.029-PUO O.00837 S O.029 O.029-PUO O.00832 S O.029 O.029-PUO O.00832 S O.029 O.029-PUO O.00832 S O.029 O.029-PUO O.00832 S O.029 O.029-PUO O.00842 S O.029 O.029-PUO O.00842 S O.029 O.029-PUO O.0				Beta values	SD			Beta values	SD			Beta values	SD		
NS 0.03 OSS-PEGOU 0.08387 S 0.03 PIQ->PEQ 0.03566 S 0.04 PIQ->PEQ 0.03566 S 0.04 PIQ->PEQ 0.03566 S 0.04 PIQ->PEQ 0.00450 S 0.02 PIQ->PEQ 0.00450 S 0.02 PIQ->PEQ D S 0.04 S 0.04 S 0.0450 S 0.0450 S 0.0450 S 0.00434 S 0.02 S 0.04 S 0.0450 S	80	S	0.14	OS->SN	0.07393	S	0.21	CIQ->PU	90090.0	S	0.2	SYQ->PS	0.054218	S	0.723
S 0.03 CS-PU 0.0420 S 0.22 PIQ-PEDU 0.0675 S 0.22 SRQ-PEDU 0.0675 S 0.24 D C C SYQ-PEDU 0.0675 S 0.04742 S 0.03 SYQ-PEDU 0.04551 S 0.2 SYQ-PEDU 0.04571 S 0.2 SYQ-PEDU 0.04571 S 0.2 SYQ-PEDU 0.04571 S 0.2 SYQ-PEDU 0.04571 S 0.04 S 0.04744 S 0.05 SYQ-PEDU 0.04572 S 0.03 SYQ-PEDU 0.04572 S 0.04742 S 0.04744 S 0.04742 </td <td>5</td> <td>NS</td> <td>0.09</td> <td>OS->PEOU</td> <td>0.08837</td> <td>S</td> <td>0.22</td> <td>PIQ->PU</td> <td>0.09356</td> <td>S</td> <td>0.4</td> <td>IQ->PS</td> <td>0.046207</td> <td>S</td> <td>0.201</td>	5	NS	0.09	OS->PEOU	0.08837	S	0.22	PIQ->PU	0.09356	S	0.4	IQ->PS	0.046207	S	0.201
S 0.31 MS-SN 0.0890 S 0.63 SYQ-PEQU 0.04551 S 0.2 SYQ-PED 0.04542 S 0.40 PEQU-PU 0.04501 S 0.3 SERQ-PED 0.04742 S 0.3 SERQ-PED 0.05208 NS NS 0.13 MS-PED 0.15258 S 0.36 PU-PED 0.0783 S 0.3 SERQ-PED 0.05030 NS NS 0.13 MS-PED 0.1541 S 0.36 PU-PED NS	8.	S	0.14	OS->PU	0.09420	S	0.22	PIQ->PEOU	0.06673	S	0.2	SERQ->PS	0.055644	S	0.175
S (3) (3) </td <td>78</td> <td>S</td> <td>0.31</td> <td>MS->SN</td> <td>0.18807</td> <td>S</td> <td>0.63</td> <td>SYQ->PEOU</td> <td>0.04551</td> <td>S</td> <td>0.2</td> <td>SYQ->BI</td> <td>0.047442</td> <td>S</td> <td>0.294</td>	78	S	0.31	MS->SN	0.18807	S	0.63	SYQ->PEOU	0.04551	S	0.2	SYQ->BI	0.047442	S	0.294
NS 0.13 MS->PU 0.36 PU->BI 0.0399 S 0.04 PU->BI COMMAN COMMAN S 0.39 PU->BI COMMAN COMMA	24	S	0.17	MS->PEOU	0.12528	S	0.42	PEOU->PU	0.10592	S	0.3	SERQ->BI	0.055008	NS	0.067
8 0.12 IEC-PEDU 0.11541 S 0.03-PS PU->PS POPS PO-04304 S 0.04304 S PO-04304 S	.87	NS	0.13	MS->PU	0.10734	S	0.36	PU->BI	0.07839	S	0.3	PS->BI	0.040444	S	-0.09
NS -0.1 IEC-PUD 0.1863 S 6.56 PEOUPSF S CORD-SPB S CORP-SPB S CORP-SPB NS NS CORP-SPB NS N	181	S	0.12	IEC->PEOU	0.11541	S	0.39	PU->PS					0.050297	S	-0.18
NS 0.66 CSEPECU 0.1162 S 0.67 NB PSBI NS NS 0.03250 NS NS -0.2 CSEPECU NS 0.03 NS 0.0032750 S NS -0.1 TESPCU NS	999	NS	-0.1	IEC->PU	0.16863	S	0.56	PEOU->PS					0.043924	S	0.21
NS -0.2 CSE-PU	279	S	9.0	CSE->PEOU	0.17162	S	0.57	PS->BI					0.073209	NS	0.094
NS 0.08 TE->PEOU 0.07635G S NS -0.1 TE->PEOU 0.07345G S NS -0.2 TI->PEOU 0.07345G S NS -0.1 TI->PEOU 0.07345G S NS 0.03 SN->PEOU 0.00746G D D D NS 0.03 SN->PEOU D D D D D D D NS 0.04 SN->PEOU D	606	NS	-0.2	CSE->PU									0.082750	S	0.39
NS -0.1 TE->PEOU CO08307 NS NS -0.2 TE->PEOU CO03456 S NS -0.1 TI->SN CO03456 S NS -0.1 TI->PEOU CO03466 S C NS -0.1 TI->PEOU C	485	NS	0.08	TE->SN									0.076356	S	0.228
NS 0.03 TE->PU 0.073456 S NS -0 TI->SN 0.03 TI->PEOU M	999	SN	-0.1	TE->PEOU									0.069307	NS	0.007
NS -0 NS -0.1 NS -0.1 S 0.39 S 0.19 NS 0.08 NS 0.08 S 0.4 S 0.36	182	SN	0.03	TE->PU									0.073456	S	0.22
S 0.23 S 0.39 S 0.39 S 0.38 NS 0.08 S 0.4 S 0.36	242	NS	0-	TI->SN											
NS -0.1 S 0.39 S 0.19 NS 0.08 S 0.48 S 0.48 S 0.48	114	S	0.23	TI->PEOU											
S 0.39 S 0.19 NS 0.08 S 0.4 S 0.36	303	NS	-0.1	TI->PU											
S 0.19 NS 0.08 S 0.4 S 0.36	182	S	0.39	SN->PEOU											
S 0.38 NS 0.08 S 0.4 S 0.36	920	S	0.19	SN->PU											
NS 0.08 S 0.4 S 0.36	444	S	0.38	PEOU->PU											
S 0.4 S 0.36	485	NS	0.08	SN->BI											
S 0.36	220	S	0.4	PU->BI											
	89	S	0.36	PEOU->BI											

		-0.2	0.56	0-	0.51	0.25	0.77	99.0	90.0	0.36														
		NS	S	SN	S	S	S	S	NS	S														
	SD	0.12709	0.16620	0.00605	0.15136	0.09480	0.22853	0.19588	0.03631	0.13651														
Cheng	Beta values	NE->PEOU	NE->ATU	NE->BI	IPI->PU	EXI->PU	CQ->PU	SR->PENJ	SINT->PU	SINT-	SINT-	SYF->PU	SYF->PEOU	SYF->PENJ	CSE->PEOU	ISE->PEOU	CAB->PU	CAB-	LGO->PENJ	PU->ATU	PU->BI	PEOU->PU	PENJ->ATU	PENJ->BI
		0.4	0.3	0.2	0.1	0.1	0.2	0.1	0.4	0.4	0.2	0.2	0.2	0.1	0.1	0.1	0.1	0.1	0.2	0.4	0.2	0.2	0.2	0.2
		S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S
	SD	0.03766	0.03541	0.04000	0.03846	0.03750	0.03927	0.03659	0.03886	0.03909	0.04344	0.03398	0.03697	0.03623	0.03812	0.03806	0.03745	0.03846	0.03435	0.04300	0.04591	0.04717	0.03981	0.04223
Yan Li et.al.	Beta values	SYF->PU	SYF->PEOU	SR->PU	SR->PEOU	SINT->PU	SINT->PEOU	SERQ->BI	CQ->BI	PEOU->PU	SE->PEOU	PU->BI	PEOU->BI	SE->BI										
		0.55	0.48	0.21	0.34	0.1	0.3	0.61	0.61	0.41	0.32	0.74	0.71	0.25										
		S	S	S	S	NS	S	S	S	S	S	S	S	S										
	SD	0.26703	0.23020	0.10080	0.16574	0.05348	0.14442	0.29611	0.29466	0.19773	0.15314	0.35620	0.34360	0.12261										
Karaali et.al.	Beta values	SI->PU	FC->PEOU	ANX->PEOU	PU->ATU	PEOU->ATU	PEOU->PU	ATU->BI	PU->BI															
		0.54	0.73	-0.3	0.42	0.25	0.4	0.16	0.32															
		S	S	S	S	S	S	S	S															
	SD	0.16175	0.21866	0.10184	0.12581	0.07488	0.11981	0.04793	0.09585															
Basheer and Ibrahim	Beta values	PU->BI	PEOU->BI	NP->BI	EXP->BI	ANX->BI	COMPK->BI	MS->BI																

			Liu et.al.				Lee				Abdulhameed et.al.	
SD			Beta values	SD			Beta values	SD			Beta values	SD
0.16750	S	9:0	OCD->PU	0.084530	S	0.28	CONF->PS	0.043475	S	0.552	ANX->BI	0.081871
0.10680	S	0.2	OCD->PEOU	0.175035	S	0.59	PU->PS	0.043541	S	0.12	SE->BI	0.052786
0.13161	S	0.4	OCD->PINT	0.082962	S	0.17	CONF->PU	0.039609	S	-0.08	PENJ->BI	0.072848
0.14058	S	0.5	UID->PEOU	0.062128	S	0.21	PU->BI	0.071625	S	0.13	PEOU->BI	0.051570
0.08253	S	0.2	UID->PINT	0.054661	S	0.18	PU->ATU	0.042448	NS	0.086	ATU->BI	0.054545
0.07282	S	0.2	POLE->PU	0.074972	S	0.25	PEOU->PU	0.049880	S	0.104	PU->BI	0.050184
0.07282	S	0.2	POLE->PEOU	0.063024	S	0.21	PEOU->ATU					0.066524
0.09273	S	0.3	POLE->BI	0.030765	S	0.1	PENJ->ATU					
0.13161	S	0.4	PU->BI	0.033155	S	0.11	CONC->BI					
0.06281	S	0.2	PEOU->PU	0.070184	S	0.16	ATU->BI					
0.08674	S	0.3	PEOU->PINT	0.068407	S	0.14	SN->BI					
0.05825	S	0.1	PEOU->BI	0.083843	S	0.26	PBC->BI					
0.05825	S	0.1	PINT->BI	0.154724	S	0.52	PS->BI					
				0.056973	NS	0.07	CONC->ATU					
				0.025314	NS	0.02	PENJ->BI					

			Lee et.al.				Ahmad and Samar				Chen			
	Ш		Beta values	SD			Beta values	SD			Beta values	SD		
S	0	0.43	IC->PU	0.11998	S	0.32	PU->PS	0.102309	S	0.3	IQ->PU	2.243317	S	0.48
S		0.24	TM->PU	0.16707	S	0.44	BDF->PS	0.048401	NS	0.1	IQ->PS	0.423459	S	0.61
S		0.29	DLC->PEOU	0.12910	S	0.34	PENJ->PS	0.133410	S	0.5	SYQ->PU	0.535862	S	0.08
S		0.39	PEOU->PU	0.09298	S	0.19	PEOU->Eret	0.103764	S	0.4	SYQ->PS	0.375490	S	0.27
S		89.0	PU->BI	0.20807	S	0.55	PU->Eret	0.139340	S	0.5	PU->AU	0.436430	S	0.11
S		0.12	PEOU->BI			NS	BDF->Eret	0.109888	S	0.3	PS->AU	0.176507	S	0.15
ν		0.59	PL->BI			NS	PENJ->Eret	0.145269	S	0.5	PU->PS	0.448576		0.32
				0.13026	S	0.27	PS->Eret							
	<u>-</u>	-		_	_	_		_	-	-	-	-	-	-

	Muneer et.al.				Akram and Sona				Wang and Wang				Park
	Beta values	SD			Beta values	SD			Beta values	SD			Beta values
0.233	IE->PEOU	0.01209	NS	0-	PIIT->PU	0.19001	S	0.5	IQ->PU	0.05808	S	0.23	SE->PU
0.001	SINT->PEOU	0.12472	S	0.33	PIIT->PEOU	0.08741	S	0.23	SYQ->PEOU	0.08192	S	0.58	SE->BI
0.567	SE->PEOU	0.18520	S	0.49	PIIT->SE	0.10905	NS	-0.2	SYQ->PU	0.04505	NS	0.05	SE->ATU
0.062	TS->PEOU	0.13228	S	0.35	SE->PEOU	0.20141	S	0.53	SERQ->PEOU	0.06195	S	0.42	SE->PEOU
0.495	PEOU->PU	0.10583	S	0.28	PEOU->PU	0.17101	S	0.45	PU->BI	0.05016	S	0.46	SN->PU
0.162	SN->PU	0.16252	S	0.43	SN->PU	0.09693	S	-0.2	PEOU->BI	0.05556	NS	-0.02	SN->PEOU
-0.13	IE->PU	0.02417	NS	0-	SN->BI	0.18241	S	0.48	PEOU->PU	0.04160	S	0.27	SN->ATU
0.064	SINT->PU	0.07937	S	0.21	PU->BI	0.18241	S	0.48	SN->BI	0.05233	S	0.18	SN->BI
0.13	SE->PU	0.06276	S	0.13	PEOU->BI	0.11401	S	0.3	SN->PU	0.04301	NS	-0.04	SA->PU
0.218	TS->PU					0.06664	NS	0.11	SE->BI	0.03554	S	0.22	SA->PEOU
0.412	PU->BI					0.09121	S	0.24	SE->PEOU	0.03333	NS	-0.01	SA->ATU
0.45	PEOU->BI					0.28502	S	0.75	BI->AU	0.01667	NS	0	SA->BI
0.119	SN->BI									0.04665	S	0.53	PU->ATU
										0.03591	S	0.2	PEOU->ATU
										0.04528	S	0.12	PEOU->PU
										0.06949	S	0.23	ATU->BI
										0.06667	NS	-0.04	PU->BI
										0.01000	NS	0	PEOU->BI

5 Generalutes SD Meta values	Roca and Gagne				Sørebø				Cho et.al.		
0.2 PAS-PU 0.03 0167 NS 0.1 PA->PU 0.13724 S 0.47 PF->PU 0.4 PAS-PP 0.03152 S 0.2 PA->IM 0.0147 S 0.69 PUD->PF 0.1 PCOMP->PP 0.07323 S 0.3 PCOMP->PU 0.2191 S 0.69 PUD->PF 0.2 PCOMP->PE 0.14581 S 0.4 PCOMP->PM 0.2191 N 0.0 PUD->PE 0.1 PR->PE 0.03620 NS 0.4 PCOMP->PM 0.00950 S 0.05 PUD->PE 0.1 PR->PD 0.03620 NS 0.1 PR->PD 0.00950 S 0.0 PS->PE 0.2 PP->PE 0.03620 NS 0.1 PCOMP-NIM 0.00562 S 0.0 PS->PE 0.2 PP->PE 0.03620 NS 0.2 Confirmation->PE NS 0.0 PS->PE 0.2 PP->PE 0.03623 S	Beta values	SD			Beta values	SD			Beta values	SD	
0.4 PAS->PP 0.091525 S 0.2 PA->IM 0.02147 S 0.04 PMO->PF 0.1 PCCOMP->PU 0.073325 S 0.3 PCCOM->PU 0.21911 S 0.76 PUD->PS 0.2 PCCOMP->PE 0.14581 S 0.4 PCCOM->PM 0.21911 NS 0.1 PUD->PS 0.1 PR->PP 0.036200 NS 0.4 PCCM->PM 0.03621 S 0.55 PUD->PS 0.1 PR->PP 0.036200 NS 0.1 PR->PM 0.09609 S 0.25 PUD->PS 0.2 PP->PG 0.03620 S 0.2 Confirmation->PS S 0.3 PCD->PU 0.2 PP->PG 0.03632 S 0.2 Confirmation->PS S 0.3 PCD->PS 0.2 PP->PG 0.03632 S 0.2 PC->PS PC->PS PC->PS 0.2 PP->PG 0.03632 S 0.2 PC->PS	PAS->PU	0.030167	NS	0.1	PA->PU	0.13724	S	0.47	PF->PU	0.05549	S
0.1 PCOMP->PU 0.079325 S 0.3 PCOM+>PU 0.22191 S 0.4 PCOM+>PU PUD->PSS 0.2 PCOMP->PP 0.126333 S 0.4 PCOM+>CM+>PM 0.036301 NS 0.4 PCOM+>CM+>PM 0.036301 NS 0.1 PUD->PU PUD->PU 0.1 PR->PU 0.036200 NS 0.1 PR->PU 0.09603 S 0.53 PUD->PU PUD->PU 0.1 PR->PU 0.036200 NS 0.1 PR->PM 0.09603 S 0.03 PCOM->PM PUD->PU PR->PM 0.09603 S 0.03 PCOM->PM PUD->PM PR->PM 0.09603 S 0.03 PCOM->PM PUD->PM S 0.03 DCOM->PM PCOM->PM PCO	PAS->PP	0.091525	S	0.2	PA->IM	0.20147	S	69.0	PUID->PF	0.05263	NS
0.2 PCOMP > PPP 0.12633 S 0.4 PCOMP > PPP 0.12633 S 0.4 PCOMP > PPD 0.3 PCOMP > PPC 0.114581 S 0.4 PCOMP > PD S 0.5 PUID > PD 0.1 PR > PU 0.036200 NS 0.1 PR > PU 0.05620 S 0.2 PUD > PE 0.1 PR > PP 0.036200 NS 0.1 PR > PU 0.05620 S 0.2 PUD > PE 0.2 PP > PE 0.036202 S 0.2 Confirmation > PG S 0.33 PU > PB 0.2 PP > PE 0.046387 S 0.2 Confirmation - PG S 0.42 PS > PB 0.2 PP > PE 0.046387 S 0.3 PU > PB S 0.04 PU > PB S 0.04 PS > PB 0.2 PP > PE 0.046387 S 0.2 PU > PB S 0.04 PS > PB 0.2 PP > PB 0.046387	PCOMP->PU	0.079325	S	0.3	PCOM->PU	0.22191	S	0.76	PUID->PSS	0.07280	S
0.3 PCOMP→PEOU 0.114881 S 0.4 PCOM→IM 0.16659 S 0.55 PUD->PEOU 0.1 PR->PU 0.03620 NS 0.1 PR->PU 0.09609 S 0.2 PCOM→IM 0.09609 S 0.2 PCOM→PU 0.09609 S 0.31 PCOU->PEOU PCOU->PU 0.03 PCOU->PU 0.03 PCOU->PU DCOUP PCOU->PU DCOUP PCOU->PU <	PCOMP->PP	0.126333	S	0.4	PCOM->Confirmation	0.03011	NS	-0.1	PUID->PU	0.05245	NS
0.1 PR->PU 0.036200 NS 0.1 PR->PU 0.03620 S 0.2 PSS->PEOU->PU 0.3 PR->PP 0.036200 NS 0.1 PR->IM 0.09052 S 0.31 PEOU->PU 0.2 PP->PU 0.146899 S 0.5 Confirmation->PM 0.09058 S 0.33 PU->BI 0.2 PP->PEOU 0.076387 S 0.2 Confirmation->PM S 0.42 PS->BI 0.2 PP->PEOU 0.076387 S 0.3 Confirmation->PM S 0.42 PS->BI 0.2 PP->PEOU 0.01538 S 0.5 PU->PE S 0.42 PS->BI 0.2 PEOU->BI PP->PBI PU->PE S 0.2 PU->PBI S 0.42 PS->BI 0.2 PEOU->BI PI PU->PBI S 0.3 PM->PBI S 0.42 PS->BI 0.2 PEOU->BI S 0.2 PM->PBI	PCOMP->PEOU	0.114581	S	0.4	PCOM->IM	0.16059	S	0.55	PUID->PEOU	0.07351	S
0.1 PR->PP 0.036200 NS 0.1 PR->IM 0.09635 S 0.31 PEOU->PU 0.2 PP->PU 0.146899 S 0.5 Confirmation->PM 0.09636 S 0.33 PU->BI 0.2 PP->PU 0.096342 S 0.2 Confirmation->PS 0.12264 S 0.42 PS->BI 0.2 PP->PEOU 0.076387 S 0.3 Confirmation->PM S 0.42 PS->BI 0.2 PP->PEOU 0.12633 S 0.3 PU->PS S 0.42 PS->BI 0.2 PP->BI PP->	PR->PU	0.036200	NS	0.1	PR->PU	0.09609	S	0.2	PSS->PEOU	0.06120	NS
0.3 PEOU->PU 0.146899 S 0.5 Confirmation->PU 0.09636 S 0.2 Confirmation->PG 0.1264 S 0.3 PU->BI 0.2 PP->PEOU 0.076387 S 0.3 Confirmation->PS 1.1264 S 0.42 PS->BI 0.5 PP->PEOU 0.076387 S 0.3 Confirmation->PS S 0.42 PS->BI 0.2 PP->BI 0.138085 S 0.3 PU->PS S 0.4 PU->PS S 0.2 PU->PS S 0.2 <td>PR->PP</td> <td>0.036200</td> <td>SN</td> <td>0.1</td> <td>PR->IM</td> <td>0.09052</td> <td>S</td> <td>0.31</td> <td>PEOU->PU</td> <td>0.05658</td> <td>NS</td>	PR->PP	0.036200	SN	0.1	PR->IM	0.09052	S	0.31	PEOU->PU	0.05658	NS
0.2 PP->PDU 0.006342 S 0.2 Confirmation->PS 0.1264 S 0.42 PS->BI 0.2 PP->PEOU 0.076387 S 0.3 Confirmation->IM S 0.4 PS->BI PS->BI <t< td=""><td>PEOU->PU</td><td>0.146899</td><td>S</td><td>0.5</td><td>Confirmation->PU</td><td>0.09636</td><td>S</td><td>0.33</td><td>PU->BI</td><td>0.06964</td><td>NS</td></t<>	PEOU->PU	0.146899	S	0.5	Confirmation->PU	0.09636	S	0.33	PU->BI	0.06964	NS
0.2 PP->PEOU 0.076387 S 0.3 Confirmation->IM 0.5 PU->BI 0.138085 S 0.5 PU->PS 0.2 PP->BI 0.126333 S 0.4 PU->PS 0.2 PP->BI PU->PS PU->PS 0.2 PP->BI PP->BI 0.101712 S 0.3 IM->BI 0.3 IM->BI PP->BI 0.101712 S 0.3 IM->BI 0.101712 S 0.3 IM->BI	PP->PU	0.096342	S	0.2	Confirmation->PS	0.12264	S	0.42	PS->BI	0.08045	NS
0.5 PU->BI 0.156333 S 0.5 PU->BI 0.2 PP->BI 0.126333 S 0.4 PU->BI 0.2 PEOU->BI 0.091525 S 0.2 IM->BI 0.2 PEOU->BI N N N 0.2 PEOU->BI N N N 0.3 IM->BI N N N 0.3 IM->BI N N N 0.4 PEOU->BI N N N 0.5 IM->BI N N N 0.6 IM->BI N N N 0.7 IM->BI N N N 0.8 IM->BI N N N	PP->PEOU	0.076387	S	0.3	Confirmation->IM					0.05322	S
0.2 PP->BI 0.126333 S 0.4 PU->BI 0.2 PEOU->BI 0.091525 S 0.2 IM->PS IM->BI IM->BI IM->BI IM->BI	PU->BI	0.138085	S	0.5	PU->PS					0.15026	S
0.2 PEOU>BI 0.001712 S 0.2 IM>PS 0.101712 S 0.3 IM>PS 0.3 IM>PS 0.101712 S 0.3 IM>PS IM>PS IM>PS IM>PS 0.101712 S 0.3 IM>PS IM>PS IM>PS IM>PS IM>PS 0.101712 S 0.3	PP->BI	0.126333	S	0.4	PU->BI					0.05795	S
8 003	PEOU->BI	0.091525	S	0.2	IM->PS					0.01803	NS
		0.101712	S	0.3	IM->BI						

	1	Allan and Will				Hsia and Tseng				Chang and Tung	
Beta values	Beta valu	es	SD			Beta values	SD			Beta values	SD
0.54 SN->PU	SN->P	D	0.125883	S	0.3	SE->PEOU	0.05344	S	0.2	COMPA->BI	0.1111
0.36 SN->PEOU	SN->PE(nc	0.067783	S	0.1	SE->PU	0.05641	S	0.2	PU->BI	0.1362
-0.1 SE->PU	SE->Pl	ſ	0.130725	S	0.3	SE->PFLEX	0.08016	S	0.3	COMPA->PU	0.0492
0.3 SE->PEOU	SE->PE	OU	0.198508	S	0.4	PEOU->PU	0.08610	S	0.3	PEOU->PU	0.0918
0.22 PU->BI	PU->	BI	0.121041	S	0.3	PFLEX->PU	0.07719	S	0.3	PEOU->BI	0.1097
0.39 PEOU->BI	PEOU->	·BI	0.121041	S	0.3	PEOU->BI	0.06291	S	0.1	SYQ->BI	0.0423
0.22 PEOU->PU	<-NO3-	PU	0.087150	S	0.2	PU->BI	0.11876	S	0.4	SE->BI	0.0454
0.2 SE->BI	SE->B		0.154933	S	0.3	PFLEX->BI					0.1497
0.25 SN->BI	SN->B	_									0.0681
											0.1159
											0.1816
											0.0643
											0.0794
-	_		_	_	_		-	-	_	_	

Jaflah and Hamad				Antonio et.al.				Sheng et.al.				Tobing et.al.
Beta values	SD			Beta values	SD			Beta values	SD			Beta values
CQ->PU	0.186904	S	0.63	PU->ATU	0.143091	S	0.38	PU->BI	0.19569	S	99.0	SAD->PU
CQ->PEOU	0.065075	S	0.22	PEOU->ATU	0.087361	S	0.23	PEOU->BI	0.18972	S	0.64	SAD->PEOU
SE->PU	0.139064	S	0.47	PEOU->PU	0.145437	S	0.3	PENJ->BI	0.13901	S	0.47	PU->BI
SE->PEOU	0.093007	S	0.31	SE->PEOU	0.214923	S	0.73	PEOU->PU	0.16854	S	0.57	PEOU->PU
PU->BI	0.067763	S	0.19	SE->BI	0.106287	S	98:0	BI->AU	0.08800	S	0.3	PEOU->BI
PEOU->BI	0.117590	S	0.34	ATU->BI								
SN->BI	0.114666											
_	-	_	_	_								

	SD	0.246723	0.077403	0.120943	0.135456	0.159644	0.087079	0.106430													
Liao and LU	Beta values	COMPA->BI	RAD->BI	PU->Bi	PEOU->BI	lmage->Bl	PEOU->PU														
		0.239	0.12	0.125	0.651	-0.04	0.564														
		S	NS	NS	S	NS	S														
	SD	0.090175	0.072454	0.075473	0.191725	0.024755	0.166103														
Lee	Beta values	ICS->PU	ICS->PEOU	ICT->PU	ICT->PEOU	IEA->PU	IEA->PEOU	ECS->PU	ECS->PEOU	ECT->PU	ECT->PEOU	EEA->PU	EEA->PEOU	PU->BI	PEOU->PU	PEOU->BI					
		0.1	0.23	0.3	0.22	0	0.01	0.14	0.07	0.03	60.0	-0.01	80.0	0.27	0.22	0.23					
		S	S	S	S	NS	NS	S	S	NS	S	NS	S	S	S	S					
	SD	0.029940	0.029909	0.027223	0.028834	0.020000	0.031250	0.191781	0.031390	0.030303	0.030717	0.023810	0.032922	0.029508	0.028571	0.029909					
Park et.al.	Beta values	Motivation->PEOU	Motivation->PU	Motivation->Evaluation of functions	CSP->BI	CSP->EVF	CSP->AU	ITC->PU	ITC->PEOU	ITC->EVF	PEOU->PU	PU->EVF	PEOU->BI	PU->BI	EVF->BI	EVF->AU	AU->BI				
		0.19	0.15	0.23	1.0-	0.13	-0.1	0.04	90.0	0.2	69:0	0.41	0.25	0.48	-0.1	0.4	0.03				
		S	S	S	S	S	SN	SN	NS	S	S	S	S	S	SN	S	SN				

	SD	0.07308	0.05703	0.06461	0.05464	0.05909	0.07216	0.06061	0.06818	0.06042	0.05551	0.06327	0.07331	0.07908	0.07216	0.06920	0.07500				
Hsia and Tseng	Beta values	CSE->PEOU	CSE->PU	CSE->PFLEX	PU->BI	PEOU->BI	PFLEX->BI	PEOU->PU	PU->PFLEX												
		0.3	0.1	6.0	0.2	6.0	0.3	6.0	0.3												
		S	S	S	S	S	S	S	S												
	SD	0.125883	0.067783	0.130725	0.087150	0.121041	0.154933	0.198508	0.121041												
Fu et.al.	Beta values	SF->PEOU	ID->PEOU	Nd<-OG3d	PEDO->PENJ	COMMU->PEOU	COMMU->PENJ	PU->ATU	PU->BI	PEOU->ATU	PEOU->PU	PEOU->PENJ	PENJ->ATU	ATU->BI	PENJ->BI						
		0.2	0.3	0.3	0.4	0.4	0.1	0.5	0.3	0.1	9.0	0.4	0.4	0.4	0.3						
		S	S	S	S	S	S	S	S	S	S	S	S	S	S						
	SD	0.063745	0.068826	0.048159	0.059105	0.055224	0.062802	0.044309	0.060827	0.047826	0.052681	0.053763	0.034373	0.081181	0.049521						
Hussein et.al.	Beta values	CSE->PEOU	CSE->PU	Conv->PEOU	Nd<-QI	ID->PEOU	TECHF->PU	TECHF->PEOU	ICHA->PU		PU->BI	Nd<-NO3d	PEOU->BI								
		0.4	0.2	0.1	0.3	0.3	0.3	0.1	0.1		0.1	0.2	8.0								
		S	S	SN	S	S	S	S	SN		S	S	S								
	SD	0.139742	0.056652	0.054367	0.098197	0.088491	0.073742	0.049099	0.036244		0.049099	0.079313	0.230076								

Chiu and Chang	Beta values	IQ->PS	SYQ->PS	SERQ->PS	DF->PS	DF->BI	SU->PS	PF->PS	PF->BI	IF->PS	IF->BI	PS->BI						
		0.2	0.15	0.08	0.24	-0.1	0.21	-0.1	0.11	0.17	-0.1	98.0						
		S	S	NS	S	NS	S	NS	S	S	NS	S						
	SD	0.09694	0.07271	0.04848	0.11633	0.03636	0.10179	0.03636	0.05332	0.08240	0.03030	0.41684						
Chen et.al.	Beta values	PENJ->PU	SF->PU	CHA->PEOU	SE->PEOU	PU->BI	PEOU->BI	PEOU->PU	BI->AU									
		0.4	0.3	0.3	9.0	0.4	0.4	0.2	6.0									
		S	S	S	S	S	S	S	S									
	SD	0.15172	0.10241	0.12517	0.20862	0.14793	0.15172	0.06828	0.33759									
Liaw et.al.	Beta values	PS->SE	PS->PU	MULTIN->PENJ	PU->BI	PEOU->BI												
		0.7	91	9.0	9.0	0.4												
		S	S	S	S	S												
	SD	0.20851	19.96691	0.17075	0.13165	96680.0												
Masrom	Beta values	PEOU->PU	PEOU->ATU	PU->ATU	PU->BI	ATU->BI												

		0.749	-0.32	0.557	0.637	0.000																	
		S	S	S	S	NS																	
	SD	0.06	0.11	0.13	0.08	0.05																	
Roca et.al.	Beta values	IQ->CONF	SERQ->CONF	SYQ->CONF	IQ->PS	SERQ->PS	SYQ->PS	CONF->PU	CONF->PEOU	CONF->CAB	CONF->PS	INTIF->PS	EXTIF->PS	CAB->PU	CAB->PEOU	PEOU->PS	PS->BI	CSE->PEOU	ISE->PEOU	PU->PS	CAB->PS		
		9.0	0.2	6.0	0.4	0.2	0.3	0.5	0.3	0.2	0.4	0	0	0.1	0.3	0.2	0.5	0.2	0.5	0.2	0.1		
		S	S	S	S	S	S	S	S	S	S	NS	SN	S	S	S	S	S	S	S	S		
	SD	0.22724	0.08332	0.12119	0.15528	0.06060	0.10226	0.13923	0.12119	0.07196	0.11553	0.01815	0.00605	0.04545	0.11741	0.08711	0.19315	0.06817	0.17422	0.08711	0.06768		
lfinedo	Beta values	TCHA->PU	TCHA->PEOU	UCHA->PU	UCHA->PEOU	PEOU->PU	PU->AU	PU->BI	PEOU->AU	AU->BI	PEOU->BI												
		0.217	0.323	0.382	0.249	0.375	0.072	0.312	0.676	0.672	-0.13												
		S	S	S	S	S	NS	S	S	S	S												
	SD	0.08076	0.12021	0.14217	0.09267	0.13956	0.04319	0.11612	0.25158	0.25009	0.04726												
Lee	Beta values	CQ->PU	PNEX->PU	PNEX->PEOU	PNEX->BI	CSE->PU	CSE->PEOU	CATTR->PU	CATTR->PEOU	Nd<-NS	SN->BI	PU->BI	PEOU->PU	PEOU->BI	BI->AU	CBI->AU							
		0.15	0.4	0.28	0.22	90.0	0.4	-0.1	0.01	0.25	0.01	0.28	0.16	0.2	0.37	0.02							
		S	S	S	S	NS	S	S	NS	S	NS	S	S	S	S	NS							

0.012 AFF-PU GD040cs SO Beta values SO 1.322 AFF-PU 0.10787 S 0.7 CCS-PEOU 0.00450 S 0.04 PU-PFS 0.04505 1.322 ARF-PEOU 0.01766 S 0.3 CSF-PEOU 0.10762 S 0.36 PU-PFS 0.04505 1.033 ANX-PEOU 0.12109 S 0.4 PEOU-PBI 0.12205 S 0.77 CONF-PPS 0.06608 1.733 ANX-PEOU 0.12109 S 0.4 PEOU-PBI 0.12205 S 0.51 CONF-PPS 0.06608 1.731 PEOU-PATT AN PEOU-PBI 0.12200 S 0.13 CSE-PBI 0.07609 1.340 PEOU-PATT AN AN </th <th></th> <th>Saadé and Kira</th> <th></th> <th></th> <th>Ong and Lai</th> <th></th> <th></th> <th></th> <th>WU et.al.</th> <th></th>		Saadé and Kira			Ong and Lai				WU et.al.	
0.19787 S 0.7 CSE-PEOU 0.100450 S 0.34 PU-PS 0.02404 S 0.3 CSE-PPOU 0.107562 S 0.36 PU-PBI 0.12404 S 0.4 PU-PBI 0.226976 S 0.36 PU-PBI 0.12109 S 0.4 PEOU-PBI 0.153305 S 0.51 CONF-PPU 0.11518 S 0.4 PEOU-PBI 0.153305 S 0.51 CONF-PPU 0.11518 S 0.4 PEOU-PBI 0.049834 S 0.12 CONF-PPU 0.11518 S 0.4 PEOU-PBI S 0.049 PS-PBI 0.11518 S 0.1 CONF-PDU S 0.049 PS-PBI 0.11518 S S 0.049 PS-PBI S S 0.49 PS-PBI 0.115 S S S 0.049 PS-PBI S S S S S S S		Beta values	SD		Beta values	SD			Beta values	SD
0.02404 S 0.34 CSE-PU 0.107562 S 0.36 PU->BI 0.12404 S 0.44 PU->BI 0.226976 S 0.57 CONF->PU 0.12109 S 0.44 PEOU->PU 1.01538 S 0.51 CONF->PU 0.11518 S 0.44 PEOU->PU 0.045834 S 0.12 CONF->PU 0.11518 S 0.44 PEOU->PU 0.045834 S 0.12 CONF->PU 0.11518 S 0.44 S 0.13 CONF->PU CONF->PU 0.11518 S 0.49 S 0.13 CONF->PU CONF->PU 0.11518 S 0.49 D CSE->PU CSE->PU CSE->PU 0.11518 S 0.12 CSE->PU CSE->PU CSE->PU CSE->PU 0.11519 S S 0.49 PS->BI CSE->PU CSE->PU 0.11519 S S S 0.49 PS->BI </td <td>-0.12</td> <td>AFF->PU</td> <td>0.19787</td> <td>0.7</td> <td>CSE->PEOU</td> <td>0.100450</td> <td>S</td> <td>0.34</td> <td>PU->PS</td> <td>0.04505</td>	-0.12	AFF->PU	0.19787	0.7	CSE->PEOU	0.100450	S	0.34	PU->PS	0.04505
0.12404 S 0.44 PU->BI 0.226976 S 0.77 CONF->PU 0.12109 S 0.44 PEOU->BI 0.152305 S 0.51 CONF->PS 0.11518 S 0.4 PEOU->PU 0.045834 S 0.51 CONF->PS 0.11518 S 0.4 PEOU->PU 0.045834 S 0.12 CONF->PS 0.11518 S 0.4 PEOU->PU 0.045834 S 0.13 COSE->PU 0.11518 S S 0.13 CSE->PU CSE->PU 0.11518 S 0.049 PS->BI PS->BI 0.11519 S 0.144009 S 0.49 PS->BI 0.11519 S 0.144009 S 0.49 PS->BI 0.11519 S S 0.49 PS->BI 0.11519 S S S 0.49 PS->BI 0.11519 S S S S S S	0.382	AFF->PEOU	0.09746	0.3	CSE->PU	0.107562	S	0.36	PU->BI	0.12015
0.11518 S 0.4 PEOU->BI 0.152305 S 0.51 CONF->PS 0.11518 S 0.4 PEOU->PU 0.045834 S 0.12 CSE->PU 0.01518 S 0.4 PEOU->PU 0.045834 S 0.12 CSE->PU 0.01519 S 0.045834 S 0.043 CSE->PU 0.01519 S 0.043 CSE->PU 0.01519 S 0.049 PS->BI 0.01519 S 0.049	0.097	ANX->PU	0.12404	0.4	PU->BI	0.226976	S	0.77	CONF->PU	0.08410
0.11518 S 0.4 PEOUPU 0.0045834 S 0.12 CSE-PU 0.003025 NS 0.13 CSE-PU 0.003025 NS 0.01 CSE-PS 0.144009 S 0.49 PS-PBI 0.144009 S 0.049 PS-PBI 0.144009 S	-0.3	ANX->PEOU	0.12109	0.4	PEOU->BI	0.152305	S	0.51	CONF->PS	0.06608
0.045834 S 0.12 CSE-PU 0.050001 S 0.13 CSE-PS 0.003025 NS 0.13 CSE-PS 0.003025 NS 0.01 CSE-PS 0.003025 NS 0.01 CSE-PB 0.0044009 S 0.49 PS-PB 0.0044009 S 0.49	0.719	PEOU->PU	0.11518	0.4	PEOU->PU					0.03645
0.003025 NS 0.01 CSE->PS 0.003025 NS 0.01 CSE->PS 0.0144009 S 0.049 PS->BI 0.0144009 S 0.049 PS-	421	PU->ATT				0.045834	S	0.12	CSE->PU	0.12015
S 0.49 PS->BI	0.337	PEOU->ATT				0.050001	S	0.13	CSE->PS	0.02918
S 0.49 PS->BI						0.003025	NS	0.01	CSE->BI	0.00607
0.00607 0.08410 0.08410 0.08410 0.01113 0.06007 0.02037 0.0337 0.02037 0.03						0.144009	S	0.49	PS->BI	0.07509
0.08410 0.08410 0.04806 0.06007 0.01113 0.01313										0.00607
0.04806 0.04806 0.04806 0.04806 0.011113 0.11113 0.0337 0.0337										0.08410
1										0.04806
0.11113 1.1113 0.03037										0.06007
0.03037										0.11113
										0.03037

	Ong and Wang				Liao et.al.				Lee et.al.				Saade and Bahli
	Beta values	SD			Beta values	SD			Beta values	SD			Beta values
0.54	CSE->PEOU	0.142857	S	0.34	PEXP->BI	0.05263	S	0.4	PU->ATU	0.10518	S	0.4	CAB->PU
0.17	CSE->PU	0.125000	S	-0	EFEXP->BI	0.05740	S	0.2	PU->BI	0.11534	S	0.2	CAB->PEOU
-0.3	CSE->PCRED	0.119114	S	0.43	SI->BI	0.05600	NS	0.1	PEOU->ATU	0.10510	S	0.3	PEOU->PU
0.34	PU->BI	0.028037	S	0.03	FC->AU	0.05561	S	0.5	PENJ->ATU	0.12563	S	0.4	PU->BI
0.26	PEOU->BI	0.107477	S	0.92	BI->AU	0.06464	S	0.2	PENJ->BI	0.07689	S	0.2	PEOU->BI
0.2	PCRED->BI					0.05910	S	0.5	PEOU->PU				
9.0	PEOU->PU					0.05727	S	0.5	PEOU->PENJ				
0.72	PEOU->PCRED					0.07709	S	0.4	ATU->BI				

													ı					
		S	S	S	S	S	S	S	S									
	SD	0.15940	0.08206	0.10580	0.12847	0.09824	0.09654	0.17711	0.21253									
Xu and YU	Beta values	PU->ATU	PEOU->ATU	PEOU->PU	CSE->PEOU	PU->BI	CSE->BI	ATU->BI										
		0.37	0.38	0.46	0.29	0.41	0.24	0.29										
		S	S	S	S	S	S	S										
	SD	0.109215	0.110986	0.136371	0.086782	0.122203	0.071728	0.085896										
Yi and Hwang	Beta values	PENJ->PU	PENJ->PEOU	PENJ->SE	LGO->PENJ	TGO->SE	PU->BI	PEOU->BI	SE->PEOU	BI->AU	PEOU->PU	SE->AU						
		0.5	0.4	0.2	0.1	0.3	0.5	0.2	0.5	0.2	0	0.3						
		S	S	S	S	S	S	S	S	S	NS	S						
	SD	0.146741	0.120327	0.090348	0.078409	0.101641	0.135002	0.105927	0.143806	0.091483	0.012063	0.088044						
Brown	Beta values	EUND->PEOU	EOF->PEOU	SE->PEOU	ANX->PEOU	PU->AU	PEOU->AU	PEOU->PU										
		0.26	0.22	0.4	-0.2	0.04	0.29	0.39										
		S	S	S	S	NS	S	S										
	SD	0.08758	0.09334	0.09739	0.07175	0.11728	0.11770	0.09495										

Source: Constructed by the researcher based on literature review

Table-6: Reliability measure values

Marzieh		Sukainah et.al				Mohammed et.al.	Study
	Cronbach alpha		Cronbach alpha	CR	AVE		
PU	0.681	PU	0.817	0.88	0.65	PU	PU
PEOU	0.817	PEOU	0.811	0.87	0.57	PEOU	PEOU
0		0	0.887	0.93	0.82	ATU	ATU
0		0	0.889	0.93	0.82	BI	BI
AU	0.801	AU	7777	0.88	0.7	AU	AU
0		0				0	PS
0		0				0	Benefits
E-learning Motivation			0.844	0.91	0.77	Perceived Enjoyment	
Online Communication			0.843	0.9	0.68	Computer Anxiety	
			0.932	0.96	0.88	Computer Playfulness	
Perceived Enjoyment							

	Dimah et.al.				Farhan et.al.			
AVE		Cronbach alpha	CR	AVE	Canada	Cronbach alpha	CR	AVE
0.8	PU	0.911	0.93	69:0	PU	0.782	0.83	0.72
8.0	PEOU	0.87	0.91	99:0	PEOU	658.0	0.85	0.67
	0	0.897	0.93	92.0	ATU			
	0	0.931	0.95	0.83	B			
	0				0	898'0	0.91	0.76
0.8	PS				0			
0.7	Benefits				0			
9:0	Technical system quality					0.807	0.83	0.68
9:0	Information Quality					0.785	0.87	0.75
9:0	Service Quality							
0.5	Educational system Quality					98'0	0.81	0.73
9:0	Support system quality							
9:0	Learner Quality							
0.5	Instructor Quality							

	Salloum et.al.				Damijana et.al.		
AVE		Cronbach alpha	CR	AVE		Cronbach alpha	CR
0.7	DA	0.843	0.91	0.67	PU	6.0	6:0
0.93	PEOU				0	0.91	6:0
8.0	ATU				0		
0.75	BI				0		
98.0	AU				0		
	0				0	6.0	6:0
	0				0	0.85	6:0
0.86	System Quality	0.661	0.77	9.0	Technology acceptance	0.83	6:0
0.95	Content Quality	0.805	0.89	0.55	E-teaching	0.86	6:0
92.0	Information Quality	0.838	0.91	99.0	Attitude to Face-to-Face	0.85	6.0
0.73	Self-efficacy					0.71	0.8
0.55	Subjective Norm					0.8	6:0
0.81	Perceived Enjoyment					0.84	6:0
0.71	Accessibility					0.75	0.8
8.0	Computer Playfulness						
	_		•				

	CR	0.82	76:0	0.89	6:0	0.93			0.92	86:0	98.0	0.85	0.83	6:0	0.83	0.89		
	Cronbach alpha	0.677	0.928	0.749	0.831	0.842			0.842	0.976	0.742	0.721	0.724	0.772	0.759	0.749		
Flora and Zhang		PU	PEOU	0	BI	0	0	0	Subjective norm	Experience	Perceived enjoyment	Computer Anxiety	Self-efficacy					
	AVE	9.0	0.8		0.5				9.0	9.0	9.0	0.8	9.0					
	CR	6:0	6:0		6:0				6:0	6:0	6:0	6:0	6:0					
	Cronbach alpha	0.84	0.92		0.7				0.89	0.86	0.87	0.94	0.86					
Anastasia and Nikolaos	Greece	PU	PEOU	ATU	BI	0	0	0	Self-efficacy	Social norm	System accessibility	Year						
	AVE	0.7	79.0	0.67	0.75				0.72	0.62	1	П						
	CR	0.88	98.0	98.0	0.85				0.83	0.83	1	1						

	Cronbach alpha	0.786	0.746	0.758	0.722			0.715	0.699	П	Н					
Marie et.al.	Cameroon	PU	PEOU	0	BI	AU		Subjective norm	lmage	Output Quality	Facilitating conditions					
	AVE	0.7	0.7		0.84			0.67	0.78	0.84	0.54					
	CR															
	Cronbach alpha	0.856	0.86		0.907			0.755	0.856	0.904	0.837					
Waleed et.al.		PU	PEOU	0	IB	0		Relative advantages	Complexity	Trialability	Observability	Perceived compatability	Perceived Enjoyment			
	AVE	0.59	0.64		0.61			0.61	9:0	0.63	99.0	0.57	0.63			
	CR	6.0	68:0		0.92			0.91	68:0	68:0	0.84	0.83	0.91			

			Wang et.al.				Zhi et.al.	
Cronbach alpha	CR	AVE		Cronbach alpha	CR	AVE		Cronbach alpha
	0.86	0.62	PU	0.847			PU	0.907
	0.87	69.0	PEOU	0.841			PEOU	0.846
			0				0	
	0.94	0.7	BI	0.86			BI	0.899
			0				0	
			0				0	
			0				0	
	88'0	9.0	Self-efficacy	0.829			Social Influence	0.899
	0.87	0.64	PENJ	0.895			System characteristics	0.841
	0.92	62'0	User Perception	0.841			Individual differences	0.92
				0.893			Facilitating conditions	0.885
								0.884
								906:0

Irene et.al.				Abinew et.al.				Rizwan et.al
	Cronbach alpha	CR	AVE		Cronbach alpha	CR	AVE	
PU	0.94	1	2.0	Πd				PU
PEOU	0.83	6:0	2.0	PEOU				PEOU
ATU				0				ATU
BI	6.0	6:0	8:0	I8				BI
AU	0.91	6:0	8:0	NΑ				0
Flow				0				0
				0				0
	96:0	1	8:0	Management Support				Self-efficacy
	0.38	0.7	0.4	Training				
	0.83	6:0	0.7	Incentive				

PU Cronbach alpha CR AVE PPU Cronbach alpha CR PEOU 0.821 PPU 0.925 0.93 0 0.75 PPEOU 0.902 0.93 0 0.612 PPEOU 0.037 0.93 0 0.074 PPEOU 0.049 0.0549 0.044 0 0.074 PPEOU PPEOU 0.043 0.044 Social Influence 0.077 PPEOU PPEOU 0.047 0.077 0 0.072 PPEOU PPEOU 0.057 0.077	Vululleh				Ali et.al.			
0.821 PU 0.925 0.75 PEOU 0.902 0.612 BI 0.937 0.704 AU 0.659 0.677 Subjective Norm 0.671 0.677 Work life quality 0.871 0.772 Internet experience 0.871 0.752 Facilitating conditions 0.752 0.752 Facilitating conditions 0.752		Cronbach alpha	CR	AVE		Cronbach alpha	CR	AVE
0.75 PEDU 0.902 0.612 BI 0.845 0.704 AU 0.659 0.704 AU 0.659 0.677 Subjective Norm 0.871 0.677 Work life quality 0.871 0.772 Internet experience Califrating conditions 0.752 Facilitating conditions 0.752 Facilitating conditions		0.821			PU	0.925	0.93	0.72
0.612 BI 0.845 0.704 AU 0.659 0.704 AU 0.659 0.704 Subjective Norm 0.677 Subjective Norm 0.822 Work life quality 0.772 Internet experience 0.812 Self-efficacy 0.752 Facilitating conditions 0.754 Facilitating and the self-efficacy 0.755 Facilitating and the self-efficacy 0.756 Facilitating and the self-efficacy 0.757 Facilitating and the self-efficacy 0.758 Facilitating and the self-efficacy 0.759 Facilitating and the self-efficacy 0.750 Facilitating and the self-efficacy 0.751 Facilitating and the self-efficacy 0.752 Facilitating and the self-efficacy 0.753 Facilitating and the self-efficacy 0.754 Facilitating and the self-efficacy 0.755 Facilitating and the self-efficacy 0.755 Facilitating and the self-efficacy 0.756 Facilitating and the self-efficacy 0.757 Facilitating and the self-efficacy 0.758 Facilitating and the self-efficacy 0.759 Facilitating and the self-efficacy 0.750 Facilitating and the self-efficacy 0.751 Facilitating and the self-efficacy 0.752 Facilitating and the self-efficacy 0.753 Facilitating and the self-efficacy 0.754 Facilitating and the self-efficacy 0.755 Facili	Э	0.75			PEOU	0.902	0.92	0.64
0.612 BI 0.845 0.704 AU 0.659 0.704 0.871 0.871 0.677 Subjective Norm 0.871 0.822 Work life quality 0.871 0.772 Internet experience Self-efficacy 0.812 Self-efficacy Self-efficacy 0.752 Facilitating conditions Self-efficacy 0.753 Facilitating conditions Self-efficacy					0	0.937	0.94	0.81
0.704 AU 0.659 0.677 Subjective Norm 0.822 Work life quality 0.772 Internet experience 0.812 Self-efficacy 0.752 Facilitating conditions		0.612			B	0.845	0.84	0.59
0.677 0.822 0.822 0.772 0.772 Internet experience 0.812 0.752 Facilitating conditions 0.754 Facilitating conditions		0.704			AU	0.659	0.7	0.51
0.677 0.822 0.772 0.812 0.752	0					0.871	0.88	0.71
0.822 0.772 0.812 0.752								
0.812	nfluence	0.677			Subjective Norm			
	ty of life	0.822			Work life quality			
		0.772			Internet experience			
		0.812			Self-efficacy			
		0.752			Facilitating conditions			

Aamer et.al.		Dd	PEOU	ATU	BI	0	0	0	Result Demonstrability	Subjective Norm	PENJ	Self-efficacy	Perception of external control	System accessibility			
	AVE	0.64	0.52	0.55	0.65				0.56	0.59	0.65	0.55	0.53	0.51			
	CR	0.88	0.76	0.79	0.85				0.79	0.81	0.85	0.78	0.77	0.76			
	Cronbach alpha	0.874	0.74	0.783	0.846				0.792	0.807	0.846	0.773	0.763	0.758			
Qasis et.al		PU	PEOU	0	0	0	PS	0	System quality	Information Quality	Self-efficacy						
	Cronbach alpha	0.761	0.764				0.822		0.744	0.701	0.737						
Liu et.al.		PU	PEOU	ATU	B	0	0	0	Social Influence	Cost tolerance							
	Cronbach alpha	0.816	0.862	0.911	0.578				0.855	0.649							

Manuel				lbrahim		Nadia et.al.
	Cronbach alpha	CR	AVE		Cronbach alpha	
PU	0.823	0.83	0.55	PU	0.816	PU
PEOU	0.832	0.83	0.62	PEOU		
0				0		
ВІ	0.834	0.84	0.57	BI		
0				0		
0				0		
0				0		
Integrated Multimedia Instruction	0.737	0.74	0.48	Instructor Characteristics	0.707	Ease of access
Perceived quality work of life	0.73	0.75	5'0	Self-efficacy	0.818	Level of interaction
System Interactivity					0.827	Service Quality
Social media influence					0.815	Internet Quality
Internet connectivity experience						

	Faria and Mariam				Chang et.al.			
AVE		Cronbach alpha	CR	AVE		Cronbach alpha	CR	AVE
0.8	DA	0.81	6:0	0.8	PU	0.843		
0.59	PEOU	0.79	0.8	9:0	PEOU	0.828		
0.56	ATU				0			
0.71	B	0.79	6:0	0.7	BI	0.789		
	0				0			
	0				0			
	0				0			
69.0	Subjective norm	0.82	0.8	0.7	Subjective norm	0.733		
0.54	System characteristics	84	6:0	29	Experience	608.0		
0.51	self-efficacy	0.91	6:0	0.7	Perceived enjoyment	908.0		
0.52	Experience	0.79	6:0	0.7	Computer Anxiety	0.882		
0.7	Perceived Enjoyment	6.0	6:0	0.7	Self-efficacy	0.867		
0.74	Computer anxiety							
0.57	Organizational accessibility							
		3						

		Ahmed and Patrick		Willie et.al.		
CR	AVE		Cronbach alpha		Cronbach alpha	R
0.88	7.0	PU	0.84	PU	0.923	0.92
0.85	0.59	PEOU	0.75	PEOU	0.742	0.74
		0		0	0.783	0.79
0.92	0.85	BI	0.71	BI	0.831	0.83
		0		0		
0.92	6.79	PS		0		
		0		0		
		Processing	0.73	Perceived Interaction	0.866	0.87
		Perception	0.53	Course design	928.0	0.85
		Inout	0.81	Interface design	0.718	92.0
		Understanding	0.79	Experience	0.797	0.77
0.88	7.0	BELSSE			0.89	0.88
					0.884	0.89
					0.787	0.8

	Sanjiv	Priyanto et.al.				Tsai et.al.
Cronbach alpha			Cronbach alpha	CR	AVE	
0.87	PU	Π	0.91	0.93	0.74	PU
0.85	PEOU	PEOU	0.913	0.94	0.72	PEOU
0.91	ATU	0	0.931	0.95	82.0	ATU
0.92	BI	I8	0.917	0.94	0.71	BI
	0	PΑ				0
0.91	Self-efficacy	Social environment	0.914	0.94	0.74	Information quality
0.89	Subjective norm	Facilitating conditions	0.925	0.94	0.77	System quality
0.92	System accessibility		0.936	0.95	0.8	Service quality
			0.933	0.95	88'0	Perceived enjoyment

Biswadip				Moreno et.al.				Richard et.al.
	Cronbach alpha	CR	AVE		Cronbach alpha	CR	AVE	
υd		1	0.757	PU	0.791	62:0	99:0	PU
PEOU		6:0	0.706	PEOU	0.897	6.0	69:0	PEOU
0		1	0.846	ATU	0.885	0.89	99:0	ATU
0		6:0	0.81	BI	0.756	0.77	0.54	B
AU				0				
Individual characteristics		1	0.865	System Interactivity	0.752	0.77	0.63	Self-efficacy
TML system		6:0	0.624	Social Influence				
Learning Outcomes		6:0	0.865	Output Quality				
Facilitating conditions		6:0	0.578	Cognitive Absorption				
		6:0	0.518	Self-efficacy				
		0.9	0.656	Facilitating conditions				
		0.9	0.608	Prior experience				
			_					

PU Cronbach alpha CR AVE Cronbach alpha CR PEOU 1 0.9 PU 0.92 0.94 PEOU 1 0.9 PEOU 0.865 0.91 B 1 0.9 BI 0.0 0.0 0.0 B 1 0.8 AU 0.803 0.87 0.87 Self-efficacy 0.9 0.7 Perceived enjoyment 0.9 0.7 Decreived enjoyment 0.9 Subjective norm 0.9 0.7 Technical suport 0.843 0.9 stem accessibility 0.9 0.7 Self-efficacy 0.862 0.89 stem accessibility 0.9 0.7 Self-efficacy 0.862 0.89 <		Kang and Shin				Ramirez-Anormaliza			
1 0.9 PDU 0.92 1 0.9 PEOU 0.862 1 0.9 BI 1 0.8 AU 0.803 1 0.8 Social influence 0.9 0.7 Social influence 0.9 0.7 Technical suport 0.9 0.7 Self-efficacy 0.9 0.7 Self-efficacy 0.9 0.7 Self-efficacy 0.9 Satisfaction 1 0.9 Satisfaction 1 0.9 Satisfaction			Cronbach alpha	CR	AVE		Cronbach alpha	CR	AVE
1 0.9 PEOU 0.862 1 0.9 BI 0 1 0.9 BI 0.803 1 0.8 AU 0.803 0 0.7 Social influence 0.803 0 0.7 Perceived enjoyment 0.843 0 0.7 Technical suport 0.862 0 0.7 Self-efficacy 0.862 0 0.7 Satisfaction 0.862 1 0.9 Satisfaction 0.862		PU		П	6:0	PU	0.92	0.94	0.8
1 0.9 BI 1 0.803 AU 0.803 1 0.8 AU 0.9 0.7 Social influence 0.9 0.7 Perceived enjoyment 0.9 0.7 Technical suport 0.9 0.7 Self-efficacy 0.9 0.7 Self-efficacy 1 0.9 Satisfaction 1 0.9 Satisfaction		PEOU		П	6:0	PEOU	0.862	0.91	0.71
1 0.9 BI AU 0.803 1 0.8 AU 0.803 1 0.9 0.7 Social influence 0.9 0.7 Perceived enjoyment 0.9 0.7 Technical suport 0.9 0.7 Self-efficacy 0.9 0.7 Self-efficacy 0.862 1 0.9 Satisfaction		0				0			
1 0.8 AU 0.803 0.9 0.7 Social influence 0.9 0.7 Perceived enjoyment 0.9 0.7 Technical suport 0.9 0.7 Self-efficacy 0.9 0.7 Self-efficacy 1 0.9 Satisfaction		BI		П	6:0	B			
0.9 0.7 Social influence 0.9 0.7 Perceived enjoyment 0.9 0.7 Technical suport 0.9 0.7 Self-efficacy 0.9 Satisfaction 1 0.9 Satisfaction		0		Н	0.8	AU	0.803	0.87	0.63
0.9 0.7 Social influence 0.9 0.7 Perceived enjoyment 0.9 0.7 Technical suport 0.9 0.7 Self-efficacy 0.9 0.7 Self-efficacy 0.9 Satisfaction									
0.9 0.7 Social influence 0.9 0.7 Perceived enjoyment 0.9 0.7 Technical suport 0.843 0.9 0.7 Self-efficacy 0.862 1 0.9 Satisfaction 0.862									
ent 0.9 0.7 Perceived enjoyment 0.9 0.7 Technical suport 0.843 0.9 0.7 Self-efficacy 0.862 1 0.9 Satisfaction 0.862		Self-efficacy		6.0	0.7	Social influence			
0.9 0.7 Technical suport 0.843 0.9 0.7 Self-efficacy 0.862 1 0.9 Satisfaction 0.862	Sys	tematic Lecture content		6.0	0.7	Perceived enjoyment			
0.9 0.7 Self-efficacy 0.862 1 0.9 Satisfaction 1 0.9 Gatisfaction		Subjective norm		6.0	0.7	Technical suport	0.843	0.9	0.68
6.0		System accessibility		6.0	0.7	Self-efficacy	0.862	0.89	0.67
				П	6:0	Satisfaction			

	CR	П	1		1			6.0	8.0	6.0	6:0				
	Cronbach alpha														
Ho and Liu		PU	PEOU	ATU	B	0									
	AVE	0.85	0.84	6.0	0.85										
	CR	0.96	0.96	0.96	0.95										
	Cronbach alpha	0.943	0.937	0.945	0.912										
Ratna		PU	PEOU	ATU	BI										
	Cronbach alpha	0.71	0.77	0.615	0.605										
Mohammadi		PU	PEOU	0	BI	AU	,	Educational quality	Service quality	Technical system quality	Information quality	Learning assistance			

	Nawaz et.al.				Patricio et.al.			
Cronbach alpha		Cronbach alpha	CR	AVE		Cronbach alpha	CR	AVE
0.908	ΡU	0.88	6.0	0.7	PU	0.868	0.87	0.76
0.877	PEOU	98.0	6:0	0.7	PEOU	0.855	0.87	0.78
0.883	ATU				0			
0.822	BI	8.0	6.0	0.7	BI	0.858	0.88	0.86
					AU	0.865	0.88	0.84
						0.857	0.88	92.0
0.73	Social influence	98.0	6.0	0.8	Result Demonstrability	0.86	0.87	0.76
0.897	Facilitating conditions	0.88	6.0	0.8	Perceived enjoyment	0.85	98.0	0.77
		0.77	6.0	0.7	Perception of external control	0.882	0.88	0.77
						0.869	0.88	0.77
						0.892	0.91	0.72

al.										ıt quality	n quality					
Calisir et.al.		DA	PEOU	ATU	B	0			Image	Perceived content quality	Perceived system quality	Anxiety				
	AVE	0.5	0.5	0.7					0.5	9.0	9.0	9.0				
	CR	6:0	0.8	6:0					0.7	0.7	0.7	6:0				
	Cronbach alpha	0.86	0.82	0.84					0.74	0.71	0.72	0.85				
Lee et.al.		DA	PEOU	0	B	0	0	Computer self-efficacy	Internet Self-efficacy	Instructor attitude	Learning content	Technology accessibility				
	AVE	92.0	9:0		7:0			0.5	0.52	0.62	0.56	0.53				
	CR	0.93	0.85		0.88			0.75	0.81	0.87	62.0	0.82				
	Cronbach alpha															

			Wu and Zhang				Agudo-Peregrina et.al.	Tan and Shao
Cronbach alpha	CR	AVE		Cronbach alpha	CR	AVE		
0.892	6:0	0.7	PU	0.85	6.0	0.8	PU	PU
0.948	6'0	0.8	PEOU	0.79	6.0	2.0	PEOU	PEOU
0.92	6:0	0.7	ATU				0	0
0.927	6:0	0.7	BI	0.86	6.0	6:0	BI	BI
			0				AU	
			0					
			0					
0.916	6'0	0.7	Reliability	0.89	0.8	8.0	Relevance for learning	Subjective norm
0.898	0.8	0.7	Accessibility	6.0	0.8	0.8	Perceived interaction	Output Quality
0.937	6:0	0.8	Accuracy	0.81	0.7	9:0	Subjective norm	Result demonstrability
0.925	6'0	0.8	Completeness	0.95	6.0	6:0	self-efficacy	User friendliness
0.835	8.0	0.7	Sociability	0.89	0.8	0.7	Anxiety	Environment support
0.836	8.0	0.7	Altruism	6.0	0.8	0.7	Personal innovativeness	
				0.87	0.7	0.8	Perceived playfulness	
				0.88	0.7	0.8	Self-reported habit	
				1	1	1	Facilitating conditions	

t.al.		ח	nc		_		/e norm	ficacy						
Ali et.al.		PU	PEOU	0	B		Subjective norm	Self-efficacy						
	Cronbach alpha	0.92	0.92		0.89		0.83	0.84						
Cheng		PU	PEOU	0	B		Controllability	Responsiveness	Two-way communication	Personalization	Perceived enjoyment			
	AVE	0.85	0.81		0.81		0.72	0.71	0.67	0.67	0.73			
	CR	0.94	0.93		0.93		0.88	0.88	0.89	0.89	0.89			
	Cronbach alpha	0.957	0.893		0.931		0.868	0.859	0.852	0.871	0.905			
Inma et.al.		NΑ	PEOU	ATU	IB		Resource Quality	Instructor attitude	Presence	Flow				
	AVE	0.72	0.61	0.77	0.75		0.67	89.0	0.5	0.71				
	CR	0.91	0.88	0.91	0.86		98.0	0.87	0.75	0.88				

Cheng			Lee et.al.		Ali et.al.	
	CR	AVE		Cronbach alpha		Cronbach alpha
PU	0.86	0.48	PU	0.905	PU	0.906
PEOU	0.82	0.52	PEOU	0.903	PEOU	0.881
0	0.62	0.39	ATU		0	0.905
BI	0.91	0.68	BI	0.657	B	0.851
				0.868	AU	
Learner-System interaction	0.91	0.56	Organizational support	0.757	Subjective norm	0.853
Instructor-learner interaction	0.92	0.55	Self-eficacy	0.835	Quality of working life	0.854
Learner-Learner interaction	0.88	0.51	Experience			0.748
	0.8	0.54	Task equivocality			0.87

			Cheung and Vogel		Motaghian et.al.			
Cronbach alpha	CR	AVE		Cronbach alpha		Cronbach alpha	CR	AVE
0.84	6:0	0.8	PU	0.956	PU	0.93	0.92	62'0
6:0	6:0	0.8	PEOU	0.878	PEOU	0.886	0.93	0.82
0.89	6:0	0.8	ATU		0			
0.95	1	6:0	BI	0.904	BI	0.961	0.95	98.0
0.84	6:0	0.7	AU	0.815	AU			
0.84	0.9	0.7	Sharing	0.721	Information quality	0.868	6:0	0.75
0.81	6:0	9:0	Perceived resource	0.77	System quality	0.745	0.85	99'0
0.81	6:0	0.7	Compatibility	0.828	Service quality	0.923	0.88	0.71
0.93	1	6:0	Subjective norm-Peer	0.833	Self-efficacy			
0.82	6:0	0.7	Subjective norm-Media	0.746	Subjective norm			
0.87	0.9	0.8	SN-Lecturer					
0.93	1	6:0	Self-efficacy					

	Purnomo and Lee			Hsia et.al.				Cheng
AVE		CR	AVE		Cronbach alpha	CR	AVE	
0.52	PU	0.8	9:0	PU	0.931	0.92	0.75	PU
0.52	PEOU	0.8	0.5	PEOU	0.838	0.84	0.58	PEOU
	0			0				0
0.55	BI	0.7	9.0	BI	0.916	0.92	8.0	BI
								0
0.53	Management Support	0.8	0.5	Locus of control	0.947	0.92	62'0	Course content quality
0.5	Self-efficacy	0.9	9.0	Self-efficacy	0.913	0.89	0.73	Course design quality
0.53	Experience				0.828	0.84	0.64	Support service quality
0.74	Anxiety				806	0.91	0.64	System functionality
0.59	Compatibility				0.896	6.0	9.75	System interactivity
					958	0.95	0.87	System response
					996:0	0.94	68.0	User interface design
					0.936	0.92	0.65	Instructor attitude
					0.859	0.92	0.79	Perceived enjoyment

	CR	0.76	0.76		0.83		0.76	0.75	0.82	0.92	0.85				
Chen and Tseng		PU	PEOU	0	BI		Motivation to use	Anxiety	self-efficacy						
	AVE	0.73	0.76		0.77		0.79	0.75	0.79						
	CR	0.91	6:0		0.93		0.92	0.92	0.94						
	Cronbach alpha	0.912	0.874		0.93		0.891	0.923	0.935						
park et.al.		PU	PEOU			PS	Enjoyment	Anxiety	Social influence	Organizational support	Information quality	System quality			
	AVE	0.65	99.0			0.81	0.85	0.63	0.86	0.53	0.65	0.59			
	CR	0.88	68'0			0.93	0.94	0.78	0.93	0.85	0.88	0.81			

			Lin and Chen				Ramayah et.al.
Cronbach alpha	CR	AVE		Cronbach alpha	CR	AVE	
0.931	0.93	0.82	PU				0
0.933	0.93	0.82	PEOU				0
							0
0.934	0.93	0.88	BI	0.837	0.7	0.5	BI
0.929	0.93	0.82	PS	0.911	8.0	0.8	PS
0.932	0.93	0.7	Course Information quality		8.0	0.5	Service quality
0.929	0.91	0.71	Platform information quality	0.901	8.0	0.5	System quality
0.849	0.85	0.59	System quality	0.896	8.0	0.5	Information Quality

Cheng				Veera			Lee et.al.
	Cronbach alpha	CR	AVE		CR	AVE	
PU	0.874	1	0.61	PU	98.0	0.67	PU
PEOU	0.826	1	0.53	PEOU	0.7	0.44	PEOU
ATU							
BI	0.79	1	0.52	IB	6.0	0.7	BI
AU							
Perceived performance							
Perceived Enjoyment							
Network externality	0.634	1	0.38	Self-efficacy	6:0	0.83	Subjective norm
Interpersonal influence	0.67	8:0	0.5	System functionality	0.81	0.59	Organizational support
External influence	0.632	1	0.38	Teaching materials	0.88	79.0	Experience
System functionality					0.88	0.54	Self-efficacy
System interactivity					0.78	0.55	Task equivocality
System response					0.74	0.51	Task Interdependence
Content quality					0.79	0.56	Management support
Computer Self-efficacy							
Internet self-efficacy							
Cognitive absorption							
Learning goal orientation							

		Lee		Abdulhameed et.al.		Basheer and Ibrahim	
CR	AVE		Cronbach alpha		Cronbach alpha		Cronbach alpha
6:0	0.73	ΡU	0.79	PU	0.86	PU	0.82
6:0	0.75	PEOU	0.89	PEOU	8:0	PEOU	0.83
6:0	0.72	ATU	0.88	ATU			0.84
6:0	0.79	BI	6.0	BI	0.89	B	8:0
6:0	0.82	PS					
8.0	9:0	Confirmation	0.86	Enjoyment	0.82	Normative pressure	0.83
8.0	69.0	Perceived enjoyment	0.87	Anxiety	0.88	Experience	0.62
0.8	69.0	Concentration	0.91	Self-efficacy	0.76	Anxiety	0.84
6.0	0.73	Subjective norm	0.82	Experience	0.92	Computer knowledge	
6:0	0.77	Perceived behaviour control			0.82	Management Support	

Ahmad and Samar			Chen			Liu et.al.	
	CR	AVE		Cronbach alpha	AVE		Cronbach alpha
PU	1	0.8	PU	0.89	1	PU	0.91
PEOU				0.89	1	PEOU	6:0
							0.91
E-retention				0.88	1	BI	68.0
			AU				
PS	1	6:0	PS				0.92
				0.87	1	Perceived Interaction	
Design features	6:0	0.7	Information quality	6:0	1	Online course design	0.8
Perceived enjoyment	92	0.7	System quality	0.87	1	User interface design	0.8
				0.71	1	Previous online learning experience	0.81
							0.88
							68.0

	Wang	Wang and Wang		Lee et.al.		
	- 1		Cronbach alpha		CR	AVE
		PU	0.903	PU	6:0	9.0
	<u>ц</u> 1	PEOU	0.697	PEOU	6:0	0.7
		BI	0.821	В	6:0	9.0
		AU				
					6.0	0.7
Inform	=	Information quality	0.675	Instructor characteristics	8.0	0.5
Syste	i Qu i	System Quality	0.634	Teaching materials	6.0	0.7
Servic	ا خ.	Service Quality	0.661	Design of learning contents		
Subje	(D)	Subjective norm	0.82	Playfulness		
Sel		Self-efficacy				
	I					

		Hsia and Tseng		Cho et.al.		Muneer et.al.
Cronbach alpha	AVE		Cronbach alpha		Cronbach alpha	
0.88	0.7	ρυ	0.872	PU	0.847	PU
0.74	99	PEOU	0.85	PEOU	0.874	PEOU
0.83	0.7	BI	0.868	BI	0.877	BI
			0.817	PS		
98.0	0.7	Self-efficacy	762.0	Perceived functionality	0.844	Subjective norm
98.0	9:0	Perceived flexibility	0.858	Perceived user-interface Design	0.864	Experience
			0.679	Perceived system support	0.846	System interactivity
					0.836	Self-efficacy
					0.802	Technical support

Antonio et.al.			Sheng et.al.		Tobing et.al.		Allan and Will
	Cronbach alpha	CR	China	Cronbach alpha		Cronbach alpha	
PU	0.889	0.92	PU	0.839	PU	0.867	PU
PEOU	0.858	6:0	PEOU	0.843	PEOU	0.773	PEOU
ATU							
B	0.789	0.91	BI	0.768	BI	0.588	В
	0.601	0.82	AU				
Self-efficacy	0.864	0.92	Perceived enjoyment	0.86	System adaptability	0.688	Subjective norm
						0.867	Efficacy
	•						

	Cronbach alpha	0.939	0.861	0.806	0.912			0.884								
Tseng and Hsia		DA	PEOU		BI			Internal locus control	Self-efficacy							
	AVE	9.0	0.5		9:0			9:0	9:0							
	Cronbach alpha	0.81	0.78		0.83			0.83	0.86							
Liao and LU			PEOU		BI	AU		Compatibility	Relative advantage	Trialability	Result demonstrability	Visibility	lmage			
	Cronbach alpha		0.86		0.94	0.81		0.91	0.94	0.82	0.87	0.94	96:0			
Pee		PU	PEOU		BI			Internal computing support	Internal computing training	Internal computing accessibility	External computing support	External computing training	External computing accessibility			

Fu et.al.			Hsia and Tseng		Park et.al.	
	Cronbach alpha	AVE		Cronbach alpha		Cronbach alpha
PU	0.88	0.7	PU	0.84	PU	98.0
PEOU	0.74	9.0	PEOU	0.8	PEOU	62.0
ATU						
BI	0.83	0.7	B		B	0.81
					AU	
Perceived enjoyment	98.0	0.7	Computer self-efficacy		Motivation	0.82
Functionality	98.0	9.0	Perceived flexibility		Compliance with school policy	0.73
Interface design					Instructional technology clusters	68:0
Pedagogic					Evaluation of functions	0.84
Community						0.93
						0.71

	AVE	8.0	9:0	8.0			6:0	0.7	8:0	0.7	0.7				
	Cronbach alpha	6:0	0.82	0.94			0.95	0.87	0.91	0.88	0.86				
Hussein et.al.	Cro	PU	PEOU		BI		Computer self-efficacy	Convenience	Instructional design	Technological factors	Instructors Characteristic				
	Cronbach alpha	0.922	0.816		0.805		0.84 Cc	0.828	0.817	0.766 Te	0.843 Inst				
Chiu and Chang		DA			BI	PS	Information quality	System quality	Service quality	System use	Distributive fairness	Procedural fairness	Interactional fairness		
	AVE				6.0	8.0	9.0	9.0	0.7	58	6:0	7.0	8.0		
	CR				1	6:0	6:0	6:0	6:0	0.7	Н	6:0	1		
Masrom		PU	PEOU	ATU	BI										
	Cronbach alpha	0.89	0.89	0.85	0.85										

Saadé and Kira		Lee			lfinedo
	Cronbach alpha		CR	AVE	
PU	0.825	PU	0.93	0.82	PU
PEOU	0.781	PEOU	0.92	0.73	PEOU
ATU					
	0.889	BI	96:0	0.91	BI
	0.843	AU	96'0	0.91	AU
Affect	0.724	Subjective norm	0.94	0.65	Technology characteristics
Anxiety	0.792	Content quality	0.92	0.63	User characteristics
	0.731	Perceived network externality			
	0.713	Computer self-efficacy			
	0.797	Course attributes			
	0.877	Competing behavioural intention			

	Ong and Wang		Liao et.al.			Lee et.al.	
		Cronbach alpha		CR	AVE		Cronbach alpha
6:0	DA			0.8	0.5	PU	0.821
6.0	PEOU			0.8	0.5	PEOU	0.929
				6:0	0.7	ATU	0.823
6:0	BI	0.97	BI	6.0	0.8	BI	
			AU				
6:0	Computer self-efficacy	0.93	Performance expectancy	0.8	9.0	Perceived Enjoyment	0.901
6:0	Perceived credibility	0.91	Effort expectancy				0.879
		0.85	Social influence				
		0.73	Facilitating conditions				

Vu and YU	Cronbach alpha	U-907	0.839 PEOU	0.8 ATU	0.863 BI			0.879 Computer self-efficacy							
	AVE	0.62	0.63	0.62	0.61			0.65							
Brown		PU	PEOU			AU		Ease of understanding	Ease of finding	Self-efficacy	Computer anxiety				
	Cronbach alpha	0.93	0.93					0.85	0.81	0.92	0.93				

Source: Constructed by the researcher based on literature review

Based on the above tables, we have identified factors and the corresponding paths, which will help one to understand the behaviour of the users towards adoption of the e-learning system.

Note that, those paths that are present in at least two studies are considered in the current study (Valentine et.al.). This is based on the principle that, at least two distinct values will help one to understand the variability in the data better. Also, more studies will

give better consistencies in the calculation of path coefficients. We only consider those paths that are significant and exclude those paths that are insignificant. This will help one in getting precise estimates that are significant. The following table gives the factors identified from the above tables and the same are used to build the model. The model is built by considering only those paths that are significant.

Table-7: Details of Extrinsic factors considered in the literature

S.No	Extrinsic	facto	rs
1	Self-Efficacy (SE)	12	System Accessibility (SA)
2	Anxiety (ANX)	13	Work life quality/Quality of life (WLQ)
3	Subjective Norm/ Social Norm/Influence (SN)	14	Cognitive absorption (CAB)
4	System Quality (SYQ)	15	Information Quality (IQ)
5	Content Quality (CQ)	16	Compatibility (COMP)
6	Management Support (MS)	17	Computer Playfulness (COMPL)
7	Confirmation (CONF)		
8	Result Demonstrability (RD)		
9	Service Quality (SERQ)		
10	Experience (EXP)		
11	Facilitating conditions (FC)		

Source: Constructed by the researcher based on table- 4

Table-8 : Details of Intrinsic factors considered in the literature

S.No	Intrinsic factors
1	Perceived Usefulness
2	Perceived Ease of Use
3	Perceived Enjoyment
4	Perceived Satisfaction

Table-9 : Dependent Factors considered in the literature

S.No	Dependent factor
1	Actual system usage
2	Behavioural Intention
3	Attitude to use the system

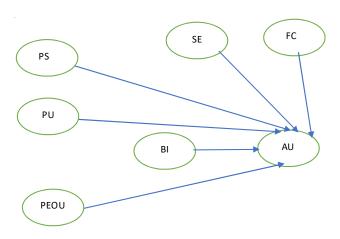
Source: Constructed by the researcher based on table- 4

We now present the tables that gives the paths between the factors and the figure presented after the tables give the model proposed.

Table-10 : Paths identified for the dependent factors

Dependent Factor	Intrinsic Factors	Extrinsic Factors
-	BI	FC
	PU	SE
AU	PEOU	
	PS	
	PS	ANX
	PEOU	SE
	PENJ	SYQ
	PU	COMPA
		WLQ
		EXP
BI		IQ
		SA
		SN/ SON/I
		SERQ
		ATU
	PU	SN /SON/I
	PENJ	
ATU	PEOU	

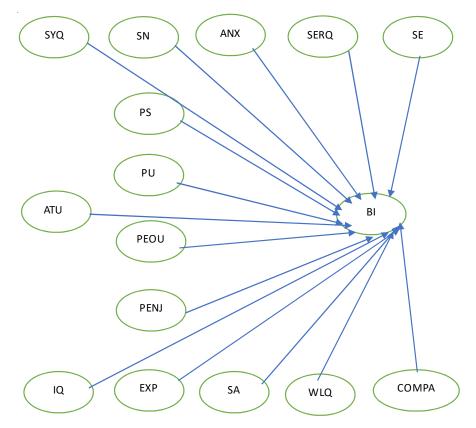
Source: Constructed by the researcher based on table- 5


Table-11 : Paths identified for Intrinsic factors

Intrinsic Factor	Intrinsic Factor	Related Factors
	PU	CONF
	PEOU	IQ
		SYQ
PS		SERQ
		SE
	PENJ	SYSF
	PEOU	CONF
		CAB
		IQ
		RD
		SN/ SON/I
		EXP
DIT		CQ
PU		SQ
		ANX
		SE
	PENJ	FC
		CAB
		SA
		EXP
		IQ
		CQ
		SQ
		SN/ SON/I
PEOU		ANX
PEOU		SE
		SERQ
		MSUP
PENJ	PEOU	SYSF

Source: Constructed by the researcher based on table- 5

We now present the paths for each of the factors and the corresponding hypotheses. Using meta-analysis, we test the hypotheses.


Figure-22 : Paths for the factor AU

Source: Developed by the researcher from the literature review

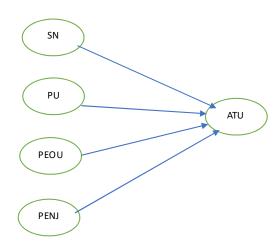

150

Figure-23 : Paths for the factor BI

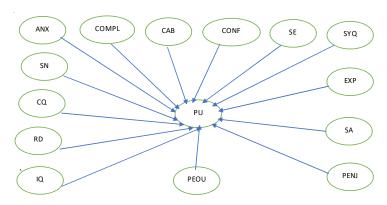

Source: Developed by the researcher from the literature review

Figure-24 : Paths for the factor ATU

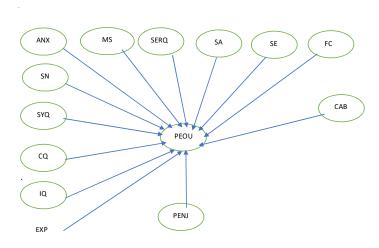

Source: Developed by the researcher from the literature review

Figure-25 : Paths for the factor PU

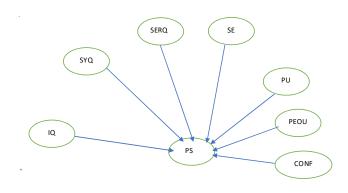
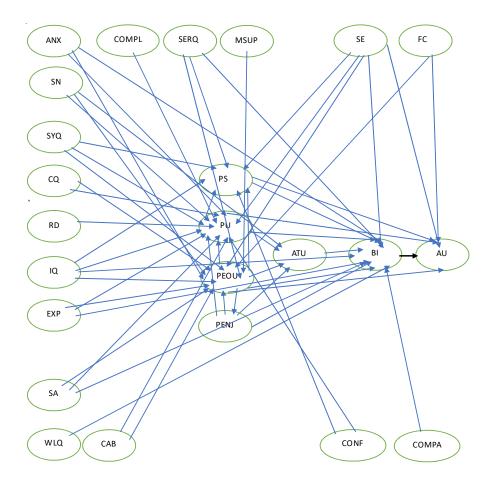

Source: Developed by the researcher from the literature review

Figure-26 : Paths for the factor PEOU

Source: Developed by the researcher from the literature review

Figure-27 : Paths for the factor PS

Source: Developed by the researcher from the literature review


Figure-28 : Paths for the factor PENJ

Source: Developed by the researcher from the literature review

Using the above paths, we construct a comprehensive extended TAM for E-learning adoption.

Figure-29 : Comprehensive Extended TAM for E-learning

Source: Developed by the researcher from the literature review

We now propose the research questions, objectives and hypotheses, based on the above model.

1. Research Questions, Objectives and Hypotheses

1.1. Research Questions

Based on the model built, we have the following questions.

- 1. Will all the factors identified in predicting PU have a significant relation with it?
- 2. Can one claim that those factors that are proposed to predict PEOU will have sufficient strength in predicting PEOU?
- 3. Will the intrinsic factors that have been identified in the model, have significant impact on BI, ATU and AU?
- 4. Will the role of BI be significant in predicting
- 5. Can one claim that the relations between the extrinsic factors the other intrinsic factors are significant?

1.2. Research Objectives

Based on the above questions raised, we have the following as the objectives of the study.

- 1. To identify the factors that are significant in predicting PU and PEOU.
- 2. To examine and identify other intrinsic factors that are significant and can explain the behavior of the learners towards e-learning system.
- 3. To find the strengths of each of the factors in explaining the behavior of e-learners towards e-learning systems.
- 4. To present the aggregate of the results found by the earlier studies using meta-analysis.

1.3. Research Hypotheses

Based on the model built, questions and the objectives of the study, we build the following research hypotheses.

- All the factors may be significantly related with PU and PEOU, related to e-learning system.
- 2. The intrinsic factors may be significantly related with BI, ATU and AU, related to e-learning system.
- All the paths identified may be having significant strengths in explaining the model, related to elearning system.
- 4. Other intrinsic factors identified may be significantly related with BI, ATU and AU, related to e-learning system.
- 5. The relation between the extrinsic factors and the intrinsic factors may be significant.

1.4. Null and Alternative hypotheses

H01: The factors related to PU and PEOU are not significant in explaining their behaviour, related to elearning system.

Ha1: The factors related to PU and PEOU are significant in explaining their behaviour, related to elearning system.

H02: The intrinsic factors are not significant in predicting BI, ATU and AU of the e-learning system.

Ha2: The intrinsic factors are significant in predicting BI, ATU and AU of the e-learning system.

H03: The strengths of the paths identified are not significant in explaining the behaviour of e-learners.

Ha3: The strengths of the paths identified are significant in explaining the behaviour of e-learners.

H04: Other intrinsic factors identified are not significantly related with BI, ATU and AU.

Ha4: Other intrinsic factors identified are significantly related with BI, ATU and AU.

H05: The relation between the extrinsic factors and the intrinsic factors is not significant.

Ha5: The relation between the extrinsic factors and the intrinsic factors is significant.

We now present the data analysis the key findings from the same. Throughout the study, we fix the level of significance at 5%. This is mainly used while testing the hypotheses related to the paths based on meta-analysis. For example, Z-test for significance of the mean effect sizes of the paths, and Q-statistic for checking homogeneity.

2. Data Analysis and Findings

We now present the analysis based on beta coefficients (effect sizes) and construct the final model. The analysis is based on Cohen (1992), where a small correlation coefficient is around 0.1 in magnitude, a medium-sized correlation is about 0.3, and a large correlation coefficient is close to 0.5 or larger. Those paths that are having less effect sizes are excluded and only those that are in these ranges are considered. Also, using the z-test we check the significance of each of the mean effect sizes. We now start the analysis

with dependent factors and then present for intrinsic factors.

Before presenting the analysis for each of the factors, we first present the reliability values for each of the factors, based on the reliability levels collected from the literature.

Cronbach alpha

Cronbach alpha is used to check the reliability or internal consistency of variables in measuring a construct. In the current study, we have collected the Cronbach alpha values from the studies considered to build the model and calculated the average value of these values. Note that, studies that have considered wither TAM or extended Tam have measured the factors using the variables and have reported the values of Cronbach for each of the factors they have considered. The same are used in the current study. The following tables give the details.

Table-12 : Cronbach Alpha for Intrinsic factors

	PU	PEOU	ATU	BI	AU	PS	PENJ
Average	0.8663	0.8453	0.8592	0.8437	0.8133	0.8847	0.8718
Minimum	0.6770	0.6970	0.6150	0.5780	0.6010	0.8170	0.7720
Maximum	0.9570	0.9480	0.9450	0.9700	0.9200	0.9500	0.9500
Variance	0.0037	0.0035	0.0057	0.0074	0.0076	0.0020	0.0021
STD	0.0606	0.0588	0.0758	0.0860	0.0872	0.0448	0.0455
Number of studies	73	72	27	65	17	10	16

Source: Constructed based on the analysis done using the data collected from literature review

Table-13 : Cronbach Alpha for extrinsic factors- 1

	SN	SE	ANX	IQ	SYQ	SA
Average	0.8100	0.8318	0.8666	0.8469	0.8401	0.8050
Minimum	0.6770	0.6340	0.7600	0.7010	0.7200	0.7580
Maximum	0.9300	0.9500	0.9400	0.9320	0.9380	0.8980
Variance	0.0043	0.0068	0.0029	0.0081	0.0057	0.0065
STD	0.0659	0.0824	0.0543	0.0901	0.0753	0.0805
Number of studies	25	30	12	10	10	3

Source: Constructed based on the analysis done using the data collected from literature review

Table-14 : Cronbach Alpha for extrinsic factors- 2

	COMPA	EXP	SERQ	CQ	MS	FC
Average	0.8680	0.8420	0.8565	0.8670	0.8900	0.7987
Minimum	0.8100	0.7720	0.8160	0.7100	0.8200	0.6200
Maximum	0.9100	0.9300	0.9360	0.9760	0.9600	0.8970
Variance	0.0027	0.0023	0.0020	0.0126	0.0098	0.0105
STD	0.0519	0.0480	0.0450	0.1123	0.0990	0.1024
Number of studies	3	10	8	5	2	7

Source: Constructed based on the analysis done using the data collected from literature review

For convenience, we have divided the extrinsic factors into two tables. From the above tables, one can note that the level of Cronbach alpha for all the constructs are above the required cut-off and close to the good level (0.8 to 0.9, Cronbach (1951)). Hence, we conclude that all the factors considered in the model are reliable.

We now compute the average variance extracted (AVE) for each of the factors, based on the data collected. AVE is measure of the amount of variance that is captured by a construct in relation to the amount of variance due to measurement error.

Table-15 : Average Variance Extracted (AVE) for Intrinsic factors

	PU	PEOU	ATU	BI	AU	PS	PENJ
Average	0.6922	0.6601	0.7187	0.7210	0.7388	0.7767	0.7232
Minimum	0.4820	0.4400	0.3890	0.5110	0.5130	0.6500	0.5800
Maximum	0.8600	0.9320	0.9010	0.9100	0.9140	0.8600	0.8700
Variance	0.0088	0.0127	0.0143	0.0157	0.0120	0.0031	0.0072
STD	0.0940	0.1127	0.1198	0.1253	0.1097	0.0553	0.0847
Number of studies	61	59	22	55	12	12	19

Source: Constructed based on the analysis done using the data collected from literature review

Table-16: Average Variance Extracted (AVE) for extrinsic factors- 1

	SN	SE	ANX	IQ	SYQ	SA	СОМРА
Average	0.6790	0.6482	0.6918	0.6803	0.6649	0.6670	0.6293
Minimum	0.5070	0.3770	0.6000	0.5400	0.5100	0.5090	0.5700
Maximum	0.9400	0.9000	0.7800	0.7670	0.8560	0.7600	0.7300
Variance	0.0121	0.0164	0.0034	0.0064	0.0120	0.0120	0.0077
STD	0.1102	0.1279	0.0581	0.0801	0.1095	0.1094	0.0876
Number of studies	20	31	10	10	11	4	3

Source: Constructed based on the analysis done using the data collected from literature review

Table-17 : Average Variance Extracted (AVE) for extrinsic factors- 2

	EXP	SERQ	CQ	CAB	MS	FC
Average	0.5780	0.6325	0.7678	0.6090	0.6157	0.5783
Minimum	0.5000	0.5300	0.5600	0.5780	0.5250	0.4500
Maximum	0.6700	0.7960	0.9540	0.6400	0.7600	0.6660
Variance	0.0049	0.0101	0.0261	0.0019	0.0160	0.0105
STD	0.0701	0.1006	0.1615	0.0438	0.1264	0.1026
Number of studies	10	10	4	2	3	4

Source: Constructed based on the analysis done using the data collected from literature review

From the above tables, one can observe that the AVE for each of the factors is more than 0.5 and hence we conclude that the factors explain good percentage of total variance.

We now look at the composite reliability (CR), which is the indicator of the shared variance among the observed variables used as an indicator of the latent construct (Fornell and Larcker (1981)). The cut-off for the composite reliability is 0.6 and the tables below give the values of the same. The average CR values are computed using the data collected from the studies considered. Note that, the data are nothing, but the CR values reported in each of these studies.

Table-18: Composite reliability (CR) for Intrinsic factors

	PU	PEOU	ATU	BI	AU	PS	PENJ
Average	0.8953	0.8764	0.8832	0.8856	0.8834	0.8988	0.8834
Minimum	0.7630	0.7020	0.6150	0.6800	0.7000	0.7600	0.8090
Maximum	0.9900	1.0000	0.9600	0.9900	0.9550	0.9500	0.9520
Variance	0.0025	0.0041	0.0064	0.0050	0.0045	0.0027	0.0017
STD	0.0500	0.0643	0.0803	0.0707	0.0667	0.0521	0.0413
Number of studies	55	53	20	50	13	12	18

Source: Constructed based on the analysis done using the data collected from literature review

Table-19: Composite reliability (CR) for extrinsic factor- 1

	SN	SE	ANX	IQ	SYQ	SA	COMPA
Average	0.8606	0.8475	0.8747	0.8909	0.8631	0.8050	0.8553
Minimum	0.6600	0.5410	0.7770	0.7800	0.7100	0.7570	0.8250
Maximum	0.9700	0.9700	0.9300	0.9360	0.9430	0.8300	0.8900
Variance	0.0047	0.0094	0.0022	0.0020	0.0059	0.0017	0.0011
STD	0.0686	0.0968	0.0473	0.0452	0.0768	0.0416	0.0327
Number of studies	19	24	10	10	11	3	3

Source: Constructed based on the analysis done using the data collected from literature review

Table-20 : Composite reliability (CR) for extrinsic factor- 2

	EXP	SERQ	CQ	CAB	MS	FC
Average	0.8279	0.8548	0.8803	0.8650	0.7760	0.7957
Minimum	0.5060	0.7340	0.7100	0.8400	0.7640	0.6200
Maximum	0.9290	0.9510	0.9840	0.8900	0.7880	0.8870
Variance	0.0179	0.0051	0.0140	0.0013	0.0003	0.0232
STD	0.1339	0.0716	0.1183	0.0354	0.0170	0.1522
Number of studies	8	9	4	2	2	3

Source: Constructed based on the analysis done using the data collected from literature review

From the above tables once can note that, all the factors have CR values more than the required cut-off and hence can be considered in building the comprehensive model.

Based on the above tables and the values we conclude that, all the factors have required reliability levels and can be used in building the model. We now look at the analysis for each the dependent and intrinsic factor paths. This analysis gives use information of the impact each of the paths have on the respective factors. We start with analysis on dependent factors and then present the analysis for other intrinsic factors.

Analysis for dependent factors-AU, BI and ATU

As indicated in the table- 4, AU, ATU and BI are the dependent factors and the following tables give the

beta (path) coefficients for each of the factors. Note that, we only consider those paths that are considered in at least two studies. The following table gives the paths retained finally for Actual e-learning system usage (AU).

Table-21 : Paths for AU

	BI	FC
	PU	SE
AU	PEOU	
	PS	

The following table gives the path coefficients for AU. The table is split into two parts for clear understanding. It gives information on sample size of path, effect size (beta coefficient), significance of the path and the standard error of the path.

Table-22 : Path coefficients for the factor AU-1

Sample size	Path	Beta	Sig	SE	Sample size	Path	Beta	Sig	SE
250	BI->AU	0.675	S	0.0610	67	PU->AU	0.407	S	0.0870
435	BI->AU	0.194	S	0.0556	181	PU->AU	0.551	S	0.4620
159	BI->AU	0.131	S	0.0633	139	PU->AU	0.285	S	0.1039
400	BI->AU	0.19	S	0.0393	116	PU->AU	0.378	S	0.1380
2574	BI->AU	0.17	S	0.0827	193	PU->AU	0.47	S	0.1393
424	BI->AU	0.401	S	0.1528	72	PU->AU	0.072	NS	0.0432
269	BI->AU	0.552	S	0.1644	78	PU->AU	0.04	NS	0.1173
300	BI->AU	0.355	S	0.1730					
132	BI->AU	0.342	S	0.0947					
131	BI->AU	0.63	S	0.1854					
116	BI->AU	0.395	S	0.1238					
390	BI->AU	0.83	S	0.2481					
230	BI->AU	0.18	S	0.0535					
423	BI->AU	0.59	S	0.1764					
81	BI->AU	0.03	NS	0.0180					
569	BI->AU	0.583	S	0.1747					
115	BI->AU	0.4	S	0.0870					
136	BI->AU	0.39	S	0.1029					
328	BI->AU	0.64	S	0.0498					
189	BI->AU	0.153	S	0.1765					
268	BI->AU	0.75	S	0.2850					
121	BI->AU	0.362	S	0.1063					
214	BI->AU	0.89	S	0.3376					
1085	BI->AU	0.37	S	0.1111					
1085	CBI->AU	0.05	NS	0.0304					
172	BI->AU	0.92	S	0.1075					
119	BI->AU	0.19	S	0.0915					

Source: Constructed based on table- 5

Table-23 : Path coefficients for the factor AU-2

Sample size	Path	Beta	Sig	SE	Sample size	Path	Beta	Sig	SE
67	PEOU->AU	0.324	S	0.0930	424	FC->AU	0.53	S	0.2020
181	PEOU->AU	0.524	S	0.3560	132	FC->AU	0.21	S	0.0946
139	PEOU->AU	0.137	NS	0.1120	139	FC->AU	0.162	NS	0.1288
116	PEOU->AU	0.533	S	0.1264	81	FC->AU	-0.18	NS	0.0862
72	PEOU->AU	0.676	S	0.2516	172	FC->AU	0.03	S	0.0280
78	PEOU->AU	0.29	S	0.1177					

Table-24: Path coefficients for the factor AU-3

Sample size	Path	Beta	Sig	SE	Sample size	Path	Beta	Sig	SE
390	PS->AU	0.18	S	0.0538	181	SE->AU	0.493	S	0.1230
423	PS->AU	0.29	S	0.1105	424	SE->AU	0.021	S	0.0124
193	PS->AU	0.29	S	0.1099	119	SE->AU	0.3	S	0.0880

From the above tables, we obtain the average path coefficients and the following table gives the same. Note that, we only consider those paths that are significant in further calculations. The following table

gives the average path coefficient and its significance. Based on these results, we test the hypotheses and then propose the final paths that are significant.

Table-25 : Summary of the effect size of the factor AU

Path	BI->AU	PU->AU	PEOU->AU	FC->AU	PS->AU	SE->AU
Number of samples	25	5	5	3	3	3
Total sample size	9549	696	514	728	1006	724
Average Path Coefficient	0.44	0.4	0.45	0.28	0.25	0.25
Standard deviation	0.0861	0.1828	0.1975	0.1685	0.1434	0.1567
95% Lower Limit	0.26607904	0.04185	0.06558	-0.0511	-0.0317	-0.0519
95% Upper Limit	0.60367241	0.75829	0.83994	0.60949	0.53065	0.56246
Z	5.04960393	2.18896	2.292	1.65651	1.73934	1.62865
p (effect size)	0.0001	0.0286	0.0219	0.0976	0.0819	0.1033
Heterogeneity test (Q)	542.92	35.99	34.12	9.25	15.23	27.37
df (Q)	24	4	4	2	2	2
p (Heterogeneity)	0.0001	0.0001	0.0001	0.0196	0.0009	0.0001
I^2	0.96	0.99	0.99	0.99	0.99	99

Source: Constructed based on data analysis

As per the Cohen (1992), one can note that the path BI->AU is having almost large effect size and has higher impact on AU. That is, an individual's intention to use the e-learning system decides their actual usage of the system. Hence, one can develop the system such that it can create an intention of usage in the mind of the user, which can make them use the system finally. From the table, one can note that PEOU and PU also have almost large effect size on AU. This indicates that, an individual who perceives that the

system is useful, actually uses the system. Also, a perception that the system can be used with ease makes one to use the system. We also note that the paths FC->AU, PS->AU and SE->AU have low effects and also are not significant (p>0.05). Hence, we drop them from the final model. The following figure gives the modified paths for AU. Also, note that the I-square value is very high indicating the appropriateness of a random effect model. The same is also reflected in the testing using Q-statistic.

Figure-30 : Modified paths for the factor AU

We now present the analysis for the factor ATU and the following table gives the path factors.

Table-26 : Paths for the factor ATU

	PU	SN /SON/SI
ATU	PENJ	
	PEOU	

Source: Constructed from table- 5

The following tables give the path coefficients along with their significance.

Source: Constructed by the researcher based on table-25

Table-27 : Path coefficients for the factor ATU-1

Sample size	Path	Beta	Sig	SE	Sample size	Path	Beta	Sig	S
250	PU->ATU	0.3870	S	0.07600	250	PEOU->ATU	0.3900	S	0.0
102	PU->ATU	0.3410	S	0.09300	102	PEOU->ATU	0.4940	S	0.0
435	PU->ATU	0.5210	S	0.05372	435	PEOU->ATU	0.1520	S	0.0
345	PU->ATU	0.3680	S	0.05391	345	PEOU->ATU	0.0900	S	0.0
110	PU->ATU	0.7770	S	0.06039	110	PEOU->ATU	0.7170	S	0.0
2574	PU->ATU	0.7300	S	0.35527	2574	PEOU->ATU	0.1000	NS	0.0
437	PU->ATU	0.1050	NS	0.05568	437	PEOU->ATU	1.0610	S	0.3
152	PU->ATU	0.6740	S	0.19898	152	PEOU->ATU	0.3890	S	0.1
156	PU->ATU	0.4360	S	0.12878	156	PEOU->ATU	0.2610	S	0.1
354	PU->ATU	0.1740	S	0.06625	354	PEOU->ATU	0.6270	S	0.1
286	PU->ATU	0.5800	S	0.17286	286	PEOU->ATU	0.2200	S	0.0
557	PU->ATU	0.5240	S	0.03375	557	PEOU->ATU	0.1830	S	0.0
100	PU->ATU	0.4500	S	0.13144	100	PEOU->ATU	0.4300	S	0.1
357	PU->ATU	0.3070	S	0.08400	357	PEOU->ATU	0.4420	S	0.1
357	PU->ATU	0.2990	S	0.09500	357	PEOU->ATU	0.0180	NS	0.0
251	PU->ATU	0.7700	S	0.22914	251	PEOU->ATU	0.1000	S	0.0
131	PU->ATU	0.5000	S	0.18854	131	PEOU->ATU	0.4300	S	0.1
116	PU->ATU	0.4950	S	0.07220	116	PEOU->ATU	0.4680	S	0.0
394	PU->ATU	0.7140	S	0.04100	394	PEOU->ATU	0.1890	S	0.0
546	PU->ATU	0.3900	S	0.11682	546	PEOU->ATU	0.3100	S	0.0
284	PU->ATU	0.6310	S	0.18803	284	PEOU->ATU	0.1770	S	0.0
2530	PU->ATU	0.6610	S	0.01800	2530	PEOU->ATU	0.1380	S	0.0
332	PU->ATU	0.1370	NS	0.08306	332	PEOU->ATU	-0.238	S	0.0
224	PU->ATU	0.2810	S	0.10663	224	PEOU->ATU	0.2800	S	0.1
107	PU->ATU	0.4620	NS	0.18500	107	PEOU->ATU	0.3400	S	0.0
226	PU->ATU	0.5500	S	0.08914	226	PEOU->ATU	0.3800	S	0.0
136	PU->ATU	0.2500	S	0.07485	136	PEOU->ATU	0.3300	S	0.0
328	PU->ATU	0.3500	S	0.04300	546	PEOU->ATU	0.2500	S	0.0
546	PU->ATU	0.4200	S	0.12581	363	PEOU->ATU	0.2110	S	0.0

	363	PU->ATU	0.1830	S	0.05466	628	PEOU->ATU	0.2000	S	0.0
Ī	628	PU->ATU	0.5300	S	0.04665	225	PEOU->ATU	0.2190	S	0.0
	225	PU->ATU	0.6290	S	0.18690	451	PEOU->ATU	0.1100	S	0.0
	451	PU->ATU	0.5100	S	0.04431	198	PEOU->ATU	-0.322	S	0.1
	198	PU->ATU	0.5570	S	0.12500	544	PEOU->ATU	0.0700	NS	0.0
Ī	544	PU->ATU	0.3900	S	0.05263	114	PEOU->ATT	0.3370	S	0.1
	152	PU->ATU	0.3700	S	0.10922					

Table-28 : Path coefficients for the factor ATU-2

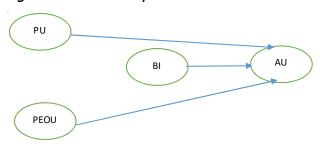
Sample size	Path	Beta	Sig	SE	Sample	Path	Beta	Sig	SE
					size				
557	PENJ->ATU	0.25	S	0.03810	156	SI->ATU	0.1670	S	0.0798
328	PENJ->ATU	0.17	S	0.03981	394	SI->ATU	-0.0120	NS	0.0300
363	PENJ->ATU	0.103	S	0.03077	345	SN->ATU	0.2460	S	0.0701
451	PENJ->ATU	0.43	S	0.03437	284	SN->ATU	-0.0800	NS	0.0485
544	PENJ->ATU	0.53	S	0.05561	628	SN->ATU	0.2700	S	0.0416

Source: Constructed based on table- 5

Using the path coefficients that are significant, we compute the average effect size and other measures. The following table gives the calculations. We consider

only those paths that are significant and based on the further calculations, the final paths for the factor are identified.

Table-29 : Summary of the effect size of the factor ATU


Path	PU->ATU	PEOU->ATU	PENJ->ATU	SN->ATU
Number of samples	33	30	5	3
Total sample size	14408	11481	2243	1129
Average Path Coefficient	0.47	0.31	0.3	0.23
Standard deviation	0.0949	0.0473	0.1373	0.1389
95% Lower Limit	0.28618	0.21591	0.02648	-0.04338
95% Upper Limit	0.65848	0.40142	0.56492	0.50129
Z	4.97325	6.52248	2.15278	1.64777
p (effect size)	0.0001	0.0001	0.0313	0.099
Heterogeneity test (Q)	2406.33	609.1	259.23	29.47
df (Q)	32	29	4	2
p (Heterogeneity)	0.0001	0.0001	0.0001	0.0001
I^2	0.98	0.95	0.98	0.99

Source: Constructed based on data analysis

From the above table, we conclude that except for the path SN->ATU (low effect size), all other paths are significant. The path PU->ATU has almost high effect size and from the confidence interval, one can note that it can reach to the value 0.65 and decrease to 0.28 (still at low size), but significant. Hence, we conclude that one has to develop an e-learning platform such that learners/users should feel that it

will be useful to them and this will impact their attitude towards the usage of the system. Similarly, PEOU (effect size=0.31, medium) and PENJ (effect size=0.30, medium) are significantly related with ATU. This indicates that, the ease in using the e-learning platform will have an impact on one's attitude to use the platform and one has to take this into consideration while developing a platform. Also, PENJ has an effect size 0.30 (medium effect) and significant

Figure-30: Modified paths for the factor AU

Source: Constructed by the researcher based on table- 25

We now present the analysis for the factor ATU and the following table gives the path factors.

impact on ATU. This indicates that, the platform developed has to make the learning enjoyable and should provide opportunities for one to learning with joy. This implies that, while developing an e-learning platform one has to design the platform in such-away that learning is joyful. Taking these into consideration, the final paths for the ATU are given in the following figure.

Table-26 : Paths for the factor ATU

	PS	ANX
	PEOU	SE
	PENJ	SYQ
	PU	COMPA
	ATU	WLQ
BI		EXP
		IQ
		SA
		SN/ SON/I
		SERQ

Source: Constructed from table- 5

The following tables give the path coefficients along with their significance?

Table-27: Path coefficients for the factor ATU-1

Sample size	Path	Beta	Sig	SE	Sample size	Path	Beta	Sig	SE
250	PU->ATU	0.3870	S	0.07600	250	PEOU->ATU	0.3900	S	0.074
102	PU->ATU	0.3410	S	0.09300	102	PEOU->ATU	0.4940	S	0.084
435	PU->ATU	0.5210	S	0.05372	435	PEOU->ATU	0.1520	S	0.048
345	PU->ATU	0.3680	S	0.05391	345	PEOU->ATU	0.0900	S	0.04
110	PU->ATU	0.7770	S	0.06039	110	PEOU->ATU	0.7170	S	0.064
2574	PU->ATU	0.7300	S	0.35527	2574	PEOU->ATU	0.1000	NS	0.053
437	PU->ATU	0.1050	NS	0.05568	437	PEOU->ATU	1.0610	S	0.31
152	PU->ATU	0.6740	S	0.19898	152	PEOU->ATU	0.3890	S	0.114
156	PU->ATU	0.4360	S	0.12878	156	PEOU->ATU	0.2610	S	0.144
354	PU->ATU	0.1740	S	0.06625	354	PEOU->ATU	0.6270	S	0.159
286	PU->ATU	0.5800	S	0.17286	286	PEOU->ATU	0.2200	S	0.063
557	PU->ATU	0.5240	S	0.03375	557	PEOU->ATU	0.1830	S	0.034
100	PU->ATU	0.4500	S	0.13144	100	PEOU->ATU	0.4300	S	0.12:
357	PU->ATU	0.3070	S	0.08400	357	PEOU->ATU	0.4420	S	0.103
357	PU->ATU	0.2990	S	0.09500	357	PEOU->ATU	0.0180	NS	0.098
251	PU->ATU	0.7700	S	0.22914	251	PEOU->ATU	0.1000	S	0.038
131	PU->ATU	0.5000	S	0.18854	131	PEOU->ATU	0.4300	S	0.162
116	PU->ATU	0.4950	S	0.07220	116	PEOU->ATU	0.4680	S	0.069
394	PU->ATU	0.7140	S	0.04100	394	PEOU->ATU	0.1890	S	0.03
546	PU->ATU	0.3900	S	0.11682	546	PEOU->ATU	0.3100	S	0.092
284	PU->ATU	0.6310	S	0.18803	284	PEOU->ATU	0.1770	S	0.083
2530	PU->ATU	0.6610	S	0.01800	2530	PEOU->ATU	0.1380	S	0.01

	i .								
2530	PU->ATU	0.6610	S	0.01800	2530	PEOU->ATU	0.1380	S	0.01
332	PU->ATU	0.1370	NS	0.08306	332	PEOU->ATU	-0.238	S	0.090
224	PU->ATU	0.2810	S	0.10663	224	PEOU->ATU	0.2800	S	0.100
107	PU->ATU	0.4620	NS	0.18500	107	PEOU->ATU	0.3400	S	0.059
226	PU->ATU	0.5500	S	0.08914	226	PEOU->ATU	0.3800	S	0.078
136	PU->ATU	0.2500	S	0.07485	136	PEOU->ATU	0.3300	S	0.09
328	PU->ATU	0.3500	S	0.04300	546	PEOU->ATU	0.2500	S	0.074
546	PU->ATU	0.4200	S	0.12581	363	PEOU->ATU	0.2110	S	0.06.
363	PU->ATU	0.1830	S	0.05466	628	PEOU->ATU	0.2000	S	0.03:
628	PU->ATU	0.5300	S	0.04665	225	PEOU->ATU	0.2190	S	0.06:
225	PU->ATU	0.6290	S	0.18690	451	PEOU->ATU	0.1100	S	0.04
451	PU->ATU	0.5100	S	0.04431	198	PEOU->ATU	-0.322	S	0.114
198	PU->ATU	0.5570	S	0.12500	544	PEOU->ATU	0.0700	NS	0.050
544	PU->ATU	0.3900	S	0.05263	114	PEOU->ATT	0.3370	S	0.120
152	PU->ATU	0.3700	S	0.10922					

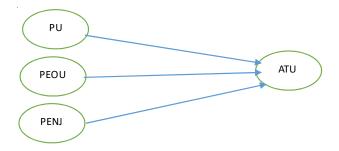
Table-28 : Path coefficients for the factor ATU-2

Sample size	Path	Beta	Sig	SE	Sample size	Path	Beta	Sig	SE
557	PENJ->ATU	0.25	S	0.03810	156	SI->ATU	0.1670	S	0.0798
328	PENJ->ATU	0.17	S	0.03981	394	SI->ATU	-0.0120	NS	0.0300
363	PENJ->ATU	0.103	S	0.03077	345	SN->ATU	0.2460	S	0.0701
451	PENJ->ATU	0.43	S	0.03437	284	SN->ATU	-0.0800	NS	0.0485
544	PENJ->ATU	0.53	S	0.05561	628	SN->ATU	0.2700	S	0.0416

Source: Constructed based on table- 5

Using the path coefficients that are significant, we compute the average effect size and other measures. The following table gives the calculations. We consider

only those paths that are significant and based on the further calculations, the final paths for the factor are identified.


Table-29 : Summary of the effect size of the factor ATU

Path	PU->ATU	PEOU->ATU	PENJ->ATU	SN->ATU
Number of samples	33	30	5	3
Total sample size	14408	11481	2243	1129
Average Path Coefficient	0.47	0.31	0.3	0.23
Standard deviation	0.0949	0.0473	0.1373	0.1389
95% Lower Limit	0.28618	0.21591	0.02648	-0.04338
95% Upper Limit	0.65848	0.40142	0.56492	0.50129
Z	4.97325	6.52248	2.15278	1.64777
p (effect size)	0.0001	0.0001	0.0313	0.099
Heterogeneity test (Q)	2406.33	609.1	259.23	29.47
df (Q)	32	29	4	2
p (Heterogeneity)	0.0001	0.0001	0.0001	0.0001
1^2	0.98	0.95	0.98	0.99

Source: Constructed based on data analysis

From the above table, we conclude that except for the path SN->ATU (low effect size), all other paths are significant. The path PU->ATU has almost high effect size and from the confidence interval, one can note that it can reach to the value 0.65 and decrease to 0.28 (still at low size), but significant. Hence, we conclude that one has to develop an e-learning platform such that learners/users should feel that it will be useful to them and this will impact their attitude towards the usage of the system. Similarly, PEOU (effect size=0.31, medium) and PENJ (effect size=0.30, medium) are significantly related with ATU. This indicates that, the ease in using the e-learning platform will have an impact on one's attitude to use the platform and one has to take this into consideration while developing a platform. Also, PENJ has an effect size 0.30 (medium effect) and significant impact on ATU. This indicates that, the platform developed has to make the learning enjoyable and should provide opportunities for one to learning with joy. This implies that, while developing an e-learning platform one has to design the platform in such-away that learning is joyful. Taking these into consideration, the final paths for the ATU are given in the following figure.

Figure-31 : Modified paths for the factor ATU

Source: Constructed by the researcher based on table-29

We now present the analysis and findings related to the factor BI. The following table gives the paths for the same.

Table-30 : Paths for the factor BI

	PS	ANX
	PEOU	SE
	PENJ	SYQ
	PU	COMPA
	ATU	WLQ
BI		EXP
		IQ
		SA
		SN/ SON/I
		SERQ

Source: Constructed by the researcher based on table- 5

The following tables give the path coefficients for the factor BI. (Due to the size, the table of path coefficients has been divided in to two parts.)

Table-31 : Path coefficients for the factor BI-1

Sample size	Path	Beta	Sig	SE	Sample size	Path	Beta	Sig	SE
250	PU->BI	0.53	S	0.0570	500	PEOU->BI	0.1220	S	0.0450
500	PU->BI	0.324	S	0.0360	435	PEOU->BI	0.0880	S	0.0471
102	PU->BI	0.386	S	0.1100	172	PEOU->BI	0.1500	S	0.0568
435	PU->BI	0.193	S	0.0681	345	PEOU->BI	0.9100	NS	0.5281
172	PU->BI	0.26	S	0.0769	159	PEOU->BI	0.5130	S	0.1516
345	PU->BI	0.108	S	0.0496	1286	PEOU->BI	0.5370	S	0.0340
159	PU->BI	0.308	S	0.0910	275	PEOU->BI	0.8300	S	0.4022
1286	PU->BI	0.18	S	0.0300	170	PEOU->BI	0.0980	NS	0.0940
275	PU->BI	0.51	S	0.2471	400	PEOU->BI	0.2510	S	0.0458
170	PU->BI	0.072	NS	0.0920	424	PEOU->BI	0.2060	S	0.1000
400	PU->BI	0.273	S	0.0618	269	PEOU->BI	0.1910	S	0.0569
2574	PU->BI	0.17	S	0.0827	354	PEOU->BI	0.0340	NS	0.0867
424	PU->BI	0.112	S	0.0659	156	PEOU->BI	-0.0010	NS	0.1593
269	PU->BI	0.133	S	0.0505	300	PEOU->BI	0.2750	S	0.1046
354	PU->BI	0.959	S	0.1142	95	PEOU->BI	0.5500	S	0.2641
437	PU->BI	0.339	S	0.1014	629	PEOU->BI	0.4610	S	0.1759
152	PU->BI	-0.047	NS	0.2586	714	PEOU->BI	0.2050	S	0.1482
156	PU->BI	0.049	NS	0.1751	252	PEOU->BI	0.2030	NS	0.1300
300	PU->BI	0.295	S	0.0880	210	PEOU->BI	0.3580	S	0.0686
95	PU->BI	0.24	NS	0.1261	132	PEOU->BI	0.2770	S	0.0893
629	PU->BI	0.892	S	0.3404	286	PEOU->BI	0.2500	S	0.0745
714	PU->BI	0.241	S	0.0920	131	PEOU->BI	0.3600	S	0.1059
354	PU->BI	-0.691	S	0.1756	251	PEOU->BI	0.2900	S	0.0863
252	PU->BI	0.21	S	0.1060	116	PEOU->BI	0.7820	S	0.0671
210	PU->BI	0.443	S	0.0664	390	PEOU->BI	0.0600	NS	0.0364
557	PU->BI	0.352	S	0.0548	230	PEOU->BI	0.2900	S	0.0862
132	PU->BI	0.348	S	0.0916	423	PEOU->BI	0.3400	S	0.1017
286	PU->BI	0.37	S	0.1103	326	PEOU->BI	0.3500	S	0.1044
251	PU->BI	0.11	NS	0.0582	133	PEOU->BI	0.2490	S	0.0422
131	PU->BI	0.53	S	0.1560	81	PEOU->BI	-0.1500	NS	0.0901
251	PU->BI	-0.11	NS	0.0692	604	PEOU->BI	0.2000	S	0.0599
116	PU->BI	0.723	S	0.0793	225	PEOU->BI	0.4800	S	0.0933
390	PU->BI	0.52	S	0.1554	569	PEOU->BI	0.1940	S	0.0581
230	PU->BI	0.3	S	0.0892	218	PEOU->BI	0.1880	S	0.0670
546	PU->BI	0.75	S	0.2247	115	PEOU->BI	0.2500	S	0.1029
423	PU->BI	0.62	S	0.1854	249	PEOU->BI	0.1160	S	0.0562
326	PU->BI	0.52	S	0.1552	483	PEOU->BI	0.3060	S	0.0431
133	PU->BI	0.484	S	0.1590	233	PEOU->BI	0.1300	S	0.0629
81	PU->BI	0.31	S	0.1485	306	PEOU->BI	0.0800	NS	0.0485
284	PU->BI	0.581	S	0.1731	402	PEOU->BI	0.2500	S	0.0747
604	PU->BI	0.37	S	0.1109	357	PEOU->BI	0.3600	S	0.1368
225	PU->BI	0.292	S	0.0527	207	PEOU->BI	0.0600	NS	0.0363
569	PU->BI	0.143	S	0.0428	280	PEOU->BI	0.7090	S	0.3436
332	PU->BI	0.708	S	0.2694	799	PEOU->BI	0.3600	S	0.0528
224	PU->BI	0.335	S	0.1271	402	PEOU->BI	0.1300	S	0.0716
107	PU->BI	0.265	S	0.1190	436	PEOU->BI	0.1200	S	0.0583
218	PU->BI	0.425	S	0.0762	189	PEOU->BI	0.3190		0.4486
115	PU->BI	0.5	S	0.0774	250	PEOU->BI	0.1170	S	0.0508
249	PU->BI	0.394	S	0.1172	628	PEOU->BI	0.0010	NS	0.0100

483	PU->BI	0.351	S	0.0424	268	PEOU->BI	-0.1600	S	0.0969
233	PU->BI	0.43	S	0.2082	155	PEOU->BI	0.1300	S	0.0628
306	PU->BI	0.396	S	0.1181	470	PEOU->BI	0.4500	S	0.0580
402	PU->BI	0.58	S	0.1734	166	PEOU->BI	0.2100	S	0.0794
412	PU->BI	0.359	S	0.1073	212	PEOU->BI	0.2600	S	0.0772
357	PU->BI	0.4	S	0.1520	233	PEOU->BI	0.2500	S	0.1210
207	PU->BI	0.66	S	0.1959	152	PEOU->BI	0.3900	S	0.1207
328	PU->BI	0.23	S	0.0459	314	PEOU->BI	0.2950	S	0.0880
280	PU->BI	0.735	S	0.3562	121	PEOU->BI	0.2320	S	0.0874
546	PU->BI	0.32	S	0.0959	155	PEOU->BI	0.3620	S	0.0906
799	PU->BI	0.28	S	0.0819	137	PEOU->BI	0.1250	NS	0.0755
402	PU->BI	0.104	S	0.0499	204	PEOU->BI	0.1600	S	0.0774
363	PU->BI	0.208	S	0.0621	137	PEOU->BI	0.6510	S	0.1917
436	PU->BI	0.44	S	0.1316	1107	PEOU->BI	0.2300	S	0.0299
189	PU->BI	0.27	S	0.3755	191	PEOU->BI	0.2500	S	0.0733
250	PU->BI	0.679	S	0.0508	233	PEOU->BI	0.2500	S	0.1210
628	PU->BI	-0.04	NS	0.0667	147	PEOU->BI	0.7800	S	0.2301
268	PU->BI	0.45	S	0.1710	214	PEOU->BI	0.4000	S	0.1517
155	PU->BI	0.21	S	0.0794	29	PEOU->BI	0.4100	S	0.0900
470	PU->BI	0.412	S	0.1503	72	PEOU->BI	-0.1270	S	0.0473
100	PU->BI	0.33	S	0.0964	1085	PEOU->BI	0.2000	S	0.0601
124	PU->BI	0.43	S	0.1263	156	PEOU->BI	0.4100	S	0.1211
166	PU->BI	0.48	S	0.1816	102	PEOU->BI	0.1600	S	0.0769
212	PU->BI	0.19	S	0.0564	140	PEOU->BI	0.2600	S	0.0982
233	PU->BI	0.18	S	0.0871	119	PEOU->BI	0.2200	S	0.1059
152	PU->BI	0.22	NS	0.1196					
314	PU->BI	0.466	S	0.1390					
121	PU->BI	0.38	S	0.1431					
155	PU->BI	0.353	S	0.0883					
120	PU->BI	0.507	S	0.1488					
137	PU->BI	0.651	S	0.1917					
204	PU->BI	0.51	S	0.2467					
137	PU->Bi	0.125	NS	0.0755					
1107	PU->BI	0.27	S	0.0295					
191	PU->BI	0.48	S	0.0791					
233	PU->BI	0.18	S	0.0871					
451	PU->BI	0.25	S	0.0608					
147	PU->BI	0.13	S	0.0491					
214	PU->BI	0.39	S	0.1479					
29	PU->BI	0.6	S	0.1316					
198	PU->BI	0.637	S	0.0750					
72	PU->BI	0.312	S	0.1161					
1085	PU->BI	0.28	S	0.0841					
187	PU->BI	0.363	S	0.1076					
156	PU->BI	0.42	S	0.1240					
102	PU->BI	0.43	S	0.1256					
544	PU->BI	0.19	S	0.0574					
140	PU->BI	0.34	S	0.1285					
152	PU->BI	0.414	S	0.1222					
119	PU->BI	0.46	S	0.1350					

Table-32 : Path coefficients for the factor BI-2

Sample size	Path	Beta	Sig	SE	Sample size	Path	Beta	Sig	SE
390	PS->BI	0.52	S	0.1554	345	SE->BI	0.247	S	0.1137
250	PS->BI	0.31	S	0.0784	170	SE->BI	0.385	S	0.0780
412	PS->BI	0.574	S	0.1716	300	SE->BI	0.2	S	0.0761
363	PS->BI	0.518	S	0.1547	251	SE->BI	0.64	S	0.0850
100	PS->BI	0.42	S	0.1226	604	SE->BI	0.12	S	0.0360
289	PS->BI	0.86	S	0.4168	115	SE->BI	0.02	NS	0.1111
184	PS->BI	0.51	S	0.1932	136	SE->BI	0.2	S	0.0909
187	PS->BI	0.486	S	0.1440	233	SE->BI	0.27	S	0.1307
					280	SE->BI	0.253	S	0.1226
					402	SE->BI	0.12	S	0.0435
					628	SE->BI	0.58	S	0.0819
					268	SE->BI	0.11	NS	0.0666
					212	SE->BI	0.4	S	0.1188
					152	SE->BI	0.2	NS	0.1042
					225	SE->BI	0.188	S	0.0678
					120	SE->BI	0.506	S	0.1485
					204	SE->BI	0.33	S	0.1596
					187	SE->BI	0.005	NS	0.0030
					152	SE->BI	0.243	S	0.0717

Table-33 : Path coefficients for the factor BI-3

Sample size	Path	Beta	Sig	SE	Sample size	Path	Beta	Sig	SE
500	ANX->BI	-0.146	S	0.0440	300	SYQ->BI	0.154	S	0.0747
799	ANX->BI	-0.06	S	0.0545	390	SYQ->BI	0.23	S	0.0687
402	ANX->BI	0.552	S	0.0435	115	SYQ->BI	0.2	S	0.0763
120	ANX->BI	-0.23	S	0.0675	250	SYQ->BI	0.18	S	0.0455
					212	SYQ->BI	0.13	S	0.0629

Source: Constructed based on table- 5

Table-34 : Path coefficients for the factor BI-4

Sample size	Path	Beta	Sig	SE	Sample size	Path	Beta	Sig	SE
390	SERQ->BI	0.2	S	0.059775	424	EXP->BI	0.028	S	0.0164
115	SERQ->BI	-0.14	NS	0.085366	252	EXP->BI	0.076	NS	0.0
250	SERQ->BI	0.3	S	0.105918	799	EXP->BI	0.46	S	0.051
280	SERQ->BI	0.611	S	0.296109	172	EXP->BI	0.34	S	0.1428
					172	EXP->BI	-0.04	S	0.1

Table-35 : Path coefficients for the factor BI-5

SE	0.0677	0.0533	0.0758																				
			-											_									
Sig	S	S	SN																				
Beta	0.178	0.14	0.05																				
Path	lQ->BI	IQ->BI	IQ->BI																				
Sample size	300	390	115																				
SE	0.0065	0.1692	0.0715	0.1311	0.1043	0.0971	0.0480	0.0342	0.0250	0.1404	0.0485	0.0684	0.0523	0.1824	0.0242	0.0180	0.1437	0.0743	0.0061	0.0349	0.0331	0.1322	0.1191
Sig	S	S	NS	S	S	S	S	S	NS	S	NS	S	S	S	NS	NS	NS	S	NS	S	S	NS	S
Beta	0.011	0.36	0.135	0.437	0.35	0.26	0.16	0.114	0.001	0.472	0.08	0.141	0.18	0.48	-0.04	0.119	0.25	0.297	0.01	0.19	0.111	-0.021	0.43
Path	SN->BI	SN->BI	SN->BI	SN->BI	SN->BI	SN->BI	SN->BI	SN->BI	SN->BI	SN->BI	SN->BI	SN->BI	SN->BI	SN->BI	SN->BI	SN->BI	SN->BI	SN->BI	SN->BI	SN->BI	SI->BI	SI->BI	SI->BI
Sample size	424	152	300	714	286	81	604	569	115	249	357	363	628	268	155	470	152	155	1085	345	569	156	172
SE	0.1227	0.2370																					
Sig	S	S																					
Beta	0.412	0.622																					
Path	QL->BI	WLQ->BI																					
Sample size	269	424																					

Source: Constructed based on table- 5

Table-36 : Path coefficients for the factor BI-6

Sample size	Path	Beta	Sig	SE	Sample size	Path	Beta	Sig	SE
500	SA->BI	0.13	S	0.035	250	ATU->BI	0.273	S	0.056
345	SA->BI	0.076	S	0.013899	102	ATU->BI	0.543	S	0.11
251	SA->BI	0.21	S	0.061947	435	ATU->BI	0.342	S	0.066628
628	SA->BI	0.002	NS	0.016667	345	ATU->BI	0.15	S	0.06383
					110	ATU->BI	0.944	S	0.053795
					2574	ATU->BI	0.33	S	0.1606
					437	ATU->BI	0.546	S	0.163322
					152	ATU->BI	0.647	S	0.205718
					156	ATU->BI	0.351	S	0.148078
					354	ATU->BI	2.169	S	0.551136
					557	ATU->BI	0.444	S	0.057745
					100	ATU->BI	0.51	S	0.148962
					357	ATU->BI	0.461	S	0.108
					251	ATU->BI	0.78	S	0.232115
					131	ATU->BI	0.86	S	0.324294
					116	ATU->BI	0.684	S	0.095946
					2530	ATU->BI	0.872	S	0.02
					332	ATU->BI	-0.165	S	0.062794
					224	ATU->BI	0.3	S	0.113841
					107	ATU->BI	0.325	NS	54
					136	ATU->BI	0.58	S	0.185304
					328	ATU->BI	0.18	S	0.053097
					546	ATU->BI	0.16	S	0.047926
					402	ATU->BI	0.086	NS	0.042448
					363	ATU->BI	0.164	S	0.070184
					628	ATU->BI	0.23	S	0.069486
					225	ATU->BI	0.342	S	0.11759
					451	ATU->BI	0.44	S	0.081181
					198	ATU->BI	0.009	NS	0.051
					544	ATU->BI	0.35	S	0.077093
					152	ATU->BI	0.291	S	0.085896

Table-37 : Path coefficients for the factor BI-7

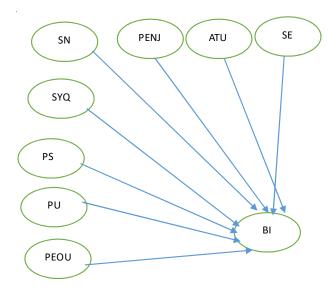
Sample	Path	Beta	Sig	SE	Sample	Path	Beta	Sig	SE
size					size				
170	PENJ->BI	0.308	S	0.081	212	COMPA->BI	0.18	S	0.053441
225	PENJ->BI	0.222	S	0.049543	137	COMPA->BI	0.239	S	0.115248
483	PENJ->BI	0.205	S	0.039953	137	COMPA->BI	0.239	S	0.090175
328	PENJ->BI	0.22	S	0.042226					
402	PENJ->BI	-	S	0.039609					
		0.081							
363	PENJ->BI	0.02	NS	0.025314					
121	PENJ->BI	0.302	S	0.145437					
451	PENJ->BI	0.31	S	0.049521					
544	PENJ->BI	0.17	S	0.064639					

Using the above table, we compute the necessary values for the paths related to BI.

Table-38 : Summary of the effect size of the factor BI-1

I SA->BI	က	1096	0.13		_	_	1.8441		28.16	ĺ	0.0001	66.0
SN->BI	15	4493	0.23	0.0417	0.1459	0.3093	5.4614	0.0001	158.84	14	0.0001	0.91
SYQ->BI	2	1267	0.18	0.0812	0.0194	0.3378	2.1984	0.02792			0.0001	66'0
PEOU->BI	62	19700	0.28	0.0386	0.2045	0.3560	7.2511	0.0001	1100.48	61	0.0001	0.94
PU->BI	68	30264	0.38	0.0374	0.3049	0.4516	10.1094	0.0001	1662.91	88	0.0001	96'0
PENJ->BI	7	2724	0.25	0.0922	0.0649	0.4266	2.6637	0.00773	113.88	9	0.0001	0.95
IQ->BI	2	069	0.16	0.1132	-0.0634	0.3802	1.3993	0.1617	6.9	1	0.01719	0.99
WLQ->BI	2	693	0.51	0.3721	-0.2199	1.2384	1.3689	l			0.01037	66.0
ANX->BI	æ	1419	-0.14	0.0886	-0.3173	0.0302	-1.6196	0.105	15.77	2	0.00075	66.0
PS->BI	8	2175	0.5	0.1671	0.1758	0.8310	3.0119	0.0025	70.94	7	0.0001	6.0
Path	Number of samples	Total sample size	Average Path Coefficient	Standard deviation	95% Lower Limit	95% Upper Limit	Z	p (effect size)	Heterogeneity test (Q)	df (Q)	p (Heterogeneity)	1~2

Source: Constructed based on data analysis


Table-39 : Summary of the effect size of the factor BI-2

Path	COMPA->BI	SE->BI	EXP->BI	SERQ->BI	ATU->BI
Number of samples	3	15	3	3	28
Total sample size	486	4262	1567	920	12886
Average Path Coefficient	0.22	0.31	0.27	0.32	0.46
Standard deviation	0.1251	0.0771	0.1707	0.1794	0.1137
95% Lower Limit	-0.0281	0.1571	-0.0650	-0.0314	0.2355
95% Upper Limit	0.4623	0.4596	0.6042	0.6720	0.6813
Z	1.7352	3.9967	1.5791	1.7852	4.0315
p (effect size)	0.0827	0.0001	0.1143	0.07423	0.0001
Heterogeneity test (Q)	13.26	207.1	31.28	13.23	1870.61
df (Q)	2	14	2	2	27
p (Heterogeneity)	0.00263	0.0001	0.0001	0.00267	0.0001
1^2	0.99	0.93	0.94	0.99	0.98

Source: Constructed based on data analysis

From the above tables one can note that, the factors ANX, WLQ, IQ, SA, COMPA, EXP, and SERQ are insignificant. Also, PS (ES=0.5), PENJ (ES=0.25), PU (ES=0.38), PEOU (ES=0.28), SYQ (ES=0.18), SN (ES=0.23), SE (ES=0.31), and ATU (ES=0.46) are significantly related with BI. Hence while building an e-learning platform, one has to take these factors into consideration. Taking this into consideration, we rebuild the paths related to BI and the following figure gives the same.

Figure-32: Modified paths for the factor BI

Source: Constructed by the researcher based on tables- 38 and 39

The managerial implication of the above model is, while building an e-learning platform one has to take into consideration these factors. It means that, one's behavioural intention to use e-learning platform for learning is influenced by these factors. Among these factors, PS is having more impact with size of 0.5 and implies that if one perceives that the platform gives them satisfaction with respect to learning, then they may have an intention to use the platform. Hence, one has to build a platform that gives learning satisfaction to the learners/users. The next factor one has to consider is attitude to use the platform. If one has an attitude to use a platform or the platform creates a positive feeling towards the platform, then

it may create an intention in the minds of the learners to choose the platform for learning. The next factor that is significant is PU with medium effect size 0.38 and this indicates that the platform has to be built in such-a-way that it has to be useful for learning. This creates an intention to use the platform. These factors are followed by PEOU, PENJ, SYQ, and, SN. This indicates that a platform that should be designed such that it gives enjoyment to the learners in learning, one should perceive that it is easy to use, the platform should be qualitative in terms of usability, reliability, availability and adaptability, and should be in such-away that there will be a social influence to choose the platform. Practitioners have to take these into consideration while developing an e-learning platform.

We now present the analysis for the intrinsic factors.

Analysis for the Intrinsic factors- PU, PEOU, PENJ and PS

We first present the analysis for Perceived usefulness (PU) and the following table gives the paths of PU.

Table-40 : Paths for the factor PU

	PENJ	SYSF
	PEOU	CONF
		CAB
		IQ
		RD
PU		SN/ SON/I
		EXP
		CQ
		SQ
		ANX
		SE
		COMPL

Source: Constructed by the researcher based on table- 5

The following tables give the paths and the path coefficients and the same will be used for further calculations.

Table-41 : Path coefficients for the factor PU-1

Sample size	Path	Beta	Sig	SE	Sample size	Path	Beta	Sig	SE
250	PENJ->PU	0.08	NS	0.0520	250	PEOU->PU	0.373	S	0.0580
181	PENJ->PU	0.511	S	0.1275	500	PEOU->PU	0.515	S	0.0640
435	PENJ->PU	-0.201	S	0.1273	181	PEOU->PU	0.472	S	0.1540
172	PENJ->PU	0.01	NS	0.0731	102	PEOU->PU	0.472	S	0.0930
714	PENJ->PU	0.321	S	0.0122	435	PEOU->PU	0.296	S	0.0573
131	PENJ->PU	0.321	S	0.0303	172	PEOU->PU	0.230	S	0.0373
408	PENJ->PU	0.294	S	0.1334	345	PEOU->PU	0.142	NS	0.0833
214	PENJ->PU	0.234	S	0.1517	159	PEOU->PU	0.457	S	0.1350
119	PENJ->PU	0.4	S	0.1317	275	PEOU->PU	0.437	NS	0.1330
119	FLINJ->FU	0.5	3	0.1407	2574	PEOU->PU	0.46	S	0.0134
					354	PEOU->PU	0.799	<u> </u>	0.2239
					437	PEOU->PU	0.799	NS	0.0605
					152	PEOU->PU	0.114	1N3 S	0.0003
					156	PEOU->PU	0.549	S	0.1490
						PEOU->PU		S	
					300 95	PEOU->PU	0.288	NS NS	0.0859 0.1261
					629	PEOU->PU	0.24	NS S	0.1261
					714	PEOU->PU	0.458	NS NS	0.1748
					354	PEOU->PU	2.249	NS S	0.0641
					252	PEOU->PU	0.486	S	
					210	PEOU->PU	0.486	S	0.0880
					210	PEOU->PU	0.424	S	0.1239
					557	PEOU->PU	0.535	S	0.1376
					132	PEOU->PU	0.555	S	
						PEOU->PU	0.601	<u>S</u>	0.0677
					357 286	PEOU->PU	0.416	S	0.0980
					251	PEOU->PU	0.21	<u> </u>	0.0020
					139	PEOU->PU	0.17	<u> </u>	0.0625
					131	PEOU->PU	0.143	S	
					251	PEOU->PU	0.32	NS	0.1542 0.1228
					131	PEOU->PU	0.53	S	0.1228
					116	PEOU->PU	0.55	S	0.1999
					390	PEOU->PU	0.067	S	0.0632
					230	PEOU->PU	0.10	S	0.0478
					423	PEOU->PU	0.31	S	0.0921
					326	PEOU->PU	0.28	S	0.0837
					133	PEOU->PU	0.34	S	0.1013
					81	PEOU->PU	0.214	S	0.0773
					284	PEOU->PU	0.28	S	0.1046
					204	PEOU->PU	0.833	S	
					2530	PEOU->PU	0.376	<u> </u>	
					332	PEOU->PU			
					224	PEOU->PU	0.304	S S	0.1157 0.1423
					107	PEOU->PU	0.504	S	0.1423
					226	PEOU->PU	0.504	<u>S</u>	0.1230
					218	PEOU->PU		<u>S</u>	
					115	PEOU->PU	0.34	NS NS	0.0727 0.1287
							0.13		0.1287
					136	PEOU->PU		S	
					249	PEOU->PU	0.634	S	0.1886
					483	PEOU->PU	0.233	S	0.0415

306 PEOU->PU 0.286 S 0	.0415 .1088 .0837 .0556 .1253 .1444 .1365 .0472 .0450 .1977 .1198 .0750 .0628 .4364 .0632 .0453 .1824 .1058
402 PEOU->PU 0.28 S 0	.0837 .0556 .1253 .1444 .1365 .0472 .0450 .1977 .1198 .0750 .0628 .4364 .0632 .0453 .1824
408 PEOU->PU 0.175 S 0	.0556 .1253 .1444 .1365 .0472 .0450 .1977 .1198 .0750 .0628 .4364 .0632 .0453 .1824
412 PEOU->PU 0.419 S 0	.1253 .1444 .1365 .0472 .0450 .1977 .1198 .0750 .0628 .4364 .0632 .0453 .1824
357 PEOU->PU 0.38 S 0	.1444 .1365 .0472 .0450 .1977 .1198 .0750 .0628 .4364 .0632 .0453 .1824
207 PEOU->PU 0.36 S 0	1365 .0472 .0450 .1977 .1198 .0750 .0628 .4364 .0632 .0453 .1824
328 PEOU->PU 0.2 S 0	.0472 .0450 .1977 .1198 .0750 .0628 .4364 .0632 .0453
328 PEOU->PU 0.33 S 0	.0450 .1977 .1198 .0750 .0628 .4364 .0632 .0453
280 PEOU->PU 0.408 S 0	.1977 .1198 .0750 .0628 .4364 .0632 .0453
546 PEOU->PU 0.4 S 0	.1198 .0750 .0628 .4364 .0632 .0453
363 PEOU-> PU 0.251 S 0	.0750 .0628 .4364 .0632 .0453
436 PEOU-> PU 0.21 S 0	.0628 .4364 .0632 .0453 .1824
189 PEOU-> PU 0.106 S 0	.4364 .0632 .0453 .1824
250 PEOU->PU 0.389 S 0 628 PEOU->PU 0.12 S 0 268 PEOU->PU 0.48 S 0 268 PEOU->PU 0.48 S 0 155 PEOU->PU 0.28 S 0 470 PEOU->PU 0.495 S 0 100 PEOU->PU 0.31 S 0 166 PEOU->PU 0.31 S 0 212 PEOU->PU 0.29 S 0 233 PEOU->PU 0.41 S 0 152 PEOU->PU 0.22 S 0 314 PEOU->PU 0.565 S 0 121 PEOU->PU 0.732 S 0	.0632 .0453 .1824
628 PEOU->PU 0.12 S 0 268 PEOU->PU 0.48 S 0 155 PEOU->PU 0.28 S 0 470 PEOU->PU 0.495 S 0 100 PEOU->PU 0.31 S 0 166 PEOU->PU 0.31 S 0 212 PEOU->PU 0.29 S 0 233 PEOU->PU 0.41 S 0 152 PEOU->PU 0.565 S 0 314 PEOU->PU 0.565 S 0	.0453 .1824
268 PEOU-> PU 0.48 S 0	.1824
155 PEOU->PU 0.28 S 0 470 PEOU->PU 0.495 S 0 100 PEOU->PU 0.31 S 0 166 PEOU->PU 0.31 S 0 212 PEOU->PU 0.29 S 0 233 PEOU->PU 0.41 S 0 152 PEOU->PU 0.22 S 0 314 PEOU->PU 0.565 S 0 121 PEOU->PU 0.732 S 0	
470 PEOU-> PU 0.495 S 0 100 PEOU-> PU 0.31 S 0 166 PEOU-> PU 0.31 S 0 212 PEOU-> PU 0.29 S 0 233 PEOU-> PU 0.41 S 0 152 PEOU-> PU 0.22 S 0 314 PEOU-> PU 0.565 S 0 121 PEOU-> PU 0.732 S 0	.1058
100 PEOU->PU 0.31 S 0 166 PEOU->PU 0.31 S 0 212 PEOU->PU 0.29 S 0 233 PEOU->PU 0.41 S 0 152 PEOU->PU 0.22 S 0 314 PEOU->PU 0.565 S 0 121 PEOU->PU 0.732 S 0	
166 PEOU->PU 0.31 S 0 212 PEOU->PU 0.29 S 0 233 PEOU->PU 0.41 S 0 152 PEOU->PU 0.22 S 0 314 PEOU->PU 0.565 S 0 121 PEOU->PU 0.732 S 0	.0735
212 PEOU->PU 0.29 S 0 233 PEOU->PU 0.41 S 0 152 PEOU->PU 0.22 S 0 314 PEOU->PU 0.565 S 0 121 PEOU->PU 0.732 S 0	.0905
233 PEOU->PU 0.41 S 0 152 PEOU->PU 0.22 S 0 314 PEOU->PU 0.565 S 0 121 PEOU->PU 0.732 S 0	.1497
152 PEOU->PU 0.22 S 0 314 PEOU->PU 0.565 S 0 121 PEOU->PU 0.732 S 0	.0861
314 PEOU->PU 0.565 S 0 121 PEOU->PU 0.732 S 0	.1985
121 PEOU->PU 0.732 S 0	.1053
	.1685
225 PEOU->PU 0.468 S 0	.2149
	.1391
	1661
204 PEOU->PU 0.22 S 0	.1064
137 PEOU->PU 0.564 S 0	.1661
1107 PEOU->PU 0.22 S 0	.0286
	.0555
	.1985
451 PEOU->PU 0.56 S 0	.0527
147 PEOU->PU 0.21 S 0	.0793
214 PEOU->PU 0.18 S 0	.0683
198 PEOU->PU 0.749 S 0	.0620
72 PEOU->PU 0.375 S 0	.1396
1085 PEOU->PU 0.16 S 0	.0481
	.1152
	.2108
	.1051
152 PEOU->PU 0.462 S 0	

Table-42 : Path coefficients for the factor PU-2

Sample size	Path	Beta	Sig	SE	Sample size	Path	Beta	Sig	SE
563	IQ->PU	0.146	S	0.04787	563	SYQ->PU	0.0790	S	0.0451
435	IQ->PU	0.138	S	0.05885	435	SYQ->PU	-0.0050	NS	0.0446
300	IQ->PU	0.213	S	0.08101	557	SYQ->PU	0.0890	S	0.0136
557	IQ->PU	0.259	S	0.04093	115	SYQ->PU	0.0600	NS	0.0984
115	IQ->PU	0.22	S	0.08943	408	SYQ->PU	0.0070	NS	0.0693
408	IQ->PU	0.228	S	0.07636	193	SYQ->PU	0.4500	S	0.1334
412	IQ->PU	0.214	S	0.07393	268	SYQ->PU	-0.1800	NS	0.1091
412	IQ->PU	0.223	S	0.08837					
193	IQ->PU	0.27	S	0.10231					
268	IQ->PU	0.5	S	0.19001					

Source: Constructed based on table- 5

Table-43 : Path coefficients for the factor PU-3

Sample size	Path	Beta	Sig	SE	Sample size	Path	Beta	Sig	SE
435	SN->PU	0.0120	NS	0.0682	172	EXP- >PU	-0.04	NS	0.0290
172	SN->PU	0.2500	S	0.0740	354	EXP- >PU	0.028	NS	0.0490
159	SN->PU	-0.0770	NS	0.0372	353	EXP- >PU	0.456	S	0.0719
354	SN->PU	0.0790	NS	0.0481	152	EXP- >PU	0.131	NS	0.0860
437	SN->PU	0.2810	S	0.1364	714	EXP- >PU	0.181	S	0.0691
152	SN->PU	0.6580	S	0.1943	252	EXP- >PU	0.052	NS	0.0910
714	SN->PU	0.2130	S	0.0813	332	EXP- >PU	0.291	S	0.1107
354	SN->PU	0.0230	NS	0.0557	306	EXP- >PU	0.259	S	0.0772
286	SN->PU	0.1500	S	0.0727	120	EXP- >PU	0.252	S	0.0740
251	SN->PU	0.7400	S	0.1437					
133	SN->PU	0.4360	S	0.0650					
81	SN->PU	0.0800	NS	0.0481					
115	SN->PU	0.3100	S	0.1095					
249	SN->PU	0.1490	S	0.0443					
357	SN->PU	0.1900	S	0.0920					
628	SN->PU	0.4600	S	0.0502					
268	SN->PU	0.3000	S	0.1140					
155	SN->PU	0.4300	S	0.1625					
470	SN->PU	0.1620	NS	0.0612					
152	SN->PU	0.5400	S	0.1151					
1085	SN->PU	0.2500	S	0.0751					
345	SN->PU	0.5130	S	0.1678					
284	SN->PU	0.2930	S	0.0873					
275	SI->PU	0.2300	S	0.1115					
156	SI->PU	0.2470	S	0.0786					
251	SI->PU	0.1400	NS	0.0741					
131	SI->PU	0.1900	S	0.0916					
423	SI->PU	0.1300	S	0.0495					
408	SI->PU	0.2100	S	0.0439					
546	SI->PU	0.5400	S	0.1617					
500	SF->PU	0.1070	S	0.0470					
214	SF->PU	0.2700	S	0.1024					

Table-44 : Path coefficients for the factor PU-4

Sample size	Path	Beta	Sig	SE	Sample size	Path	Beta	Sig	SE
435	CQ->PU	0.0170	NS	0.0533	500	SA->PU	-0.050	NS	0.0520
483	CQ->PU	0.2250	S	0.0347	435	SA->PU	0.128	S	0.0567
328	CQ->PU	0.1500	S	0.0393	345	SA->PU	0.008	S	0.0009
155	CQ->PU	0.2710	S	0.0808	251	SA->PU	0.080	NS	0.0678
1085	CQ->PU	0.1500	S	0.0451	284	SA->PU	0.346	S	0.1031
					628	SA->PU	-0.040	NS	0.0430

Source: Constructed based on table- 5

Table-45 : Path coefficients for the factor PU-5

Sample size	Path	Beta	Sig	SE	Sample size	Path	Beta	Sig	SE
181	SE->PU	0.4460	S	0.1113	437	RD->PU	0.382	S	0.114
435	SE->PU	0.0570	NS	0.0647	286	RD->PU	0.02	NS	0.012
172	SE->PU	-0.0300	NS	0.0481	230	RD->PU	0.33	S	0.098
345	SE->PU	0.1240	NS	0.1480					
354	SE->PU	-0.0270	NS	0.0543					
152	SE->PU	-0.0230	NS	0.1602					
95	SE->PU	0.2400	NS	0.1261					
714	SE->PU	0.0260	NS	0.0181					
354	SE->PU	-0.0240	NS	0.1285					
357	SE->PU	0.1830	NS	0.1050					
251	SE->PU	0.1900	S	0.0960					
423	SE->PU	0.2100	S	0.0628					
326	SE->PU	-0.0500	NS	0.0303					
326	ISE->PU	0.1600	S	0.0776					
332	SE->PU	-0.0710	NS	0.0430					
224	SE->PU	0.3870	S	0.1469					
115	SE->PU	0.0400	NS	0.0721					
306	SE->PU	0.0750	NS	0.0455					
402	SE->PU	0.1300	S	0.0631					
357	SE->PU	-0.1500	NS	0.0909					
207	SE->PU	-0.2100	NS	0.1271					
628	SE->PU	0.2300	S	0.0581					
470	SE->PU	0.1300	NS	0.0804					
233	SE->PU	0.1400	S	0.0678					
152	SE->PU	-0.0700	NS	0.0921					
155	SE->PU	0.2940	S	0.0736					
233	SE->PU	0.1400	S	0.0678					
147	SE->PU	0.1500	S	0.0567					
1085	SE->PU	0.0600	NS	0.0364					
187	SE->PU	0.1210	S	0.0458					
156	SE->PU	0.3300	S	0.0975					
140	SE->PU	0.1700	S	0.0821					

Table-46 : Path coefficients for the factor PU-6

Sample size	Path	Beta	Sig	SE	Sample size	Path	Beta	Sig	SE
251	CAB->PU	0.3	S	0.0893	250	ANX->PU	0.0380	NS	0.0560
328	CAB->PU	0.1	S	0.0375	500	ANX->PU	-	S	0.0640
							0.1970		
184	CAB->PU	0.12	S	0.0454	172	ANX->PU	0.1200	S	0.0355
102	CAB->PU	0.36	S	0.1052	714	ANX->PU	-	S	0.0928
							0.1910		
					306	ANX->PU	-	S	0.0734
							0.1930		
					402	ANX->PU	0.0100	NS	0.0061
					408	ANX->PU	-	S	0.0404
							0.0910		
					114	ANX->PU	0.0970	NS	0.0585

Source: Constructed based on table- 5

Table-47 : Path coefficients for the factor PU-7

Sample	Path	Beta	Sig	SE	Sample	Path	Beta	Sig	SE
size					size				
250	COMPL->PU	0.362	S	0.0680	363	CONF->PU	0.171	S	0.0830
435	COMPL->PU	0.157	S	0.0559	184	CONF->PU	0.47	S	0.1392
					187	CONF->PU	0.766	S	0.2270

Source: Constructed based on table- 5

Table-48 : Summary of the effect size of the factor PU-1

Path	PENJ->PU	PEOU->PU	CONF->PU	IQ->PU	RD->PU	SN->PU
Number of samples	7	88	3	10	2	25
Total sample size	2202	29005	734	3663	667	8436
Average Path Coefficient	0.32	0.4	0.45	0.23	0.36	0.32
Standard deviation	0.1327	0.0425	0.2584	0.07106	0.2523	0.059
95% Lower Limit	0.0571	0.3165	-0.0589	0.0903	-0.1390	0.1960
95% Upper Limit	0.5774	0.4835	0.9544	0.3689	0.8503	0.4275
Z	2.3906	9.3922	1.7321	3.2313	1.4092	5.2808
p (effect size)	0.0168	0.0001	0.0832	0.00123	0.1587	0.00001
Heterogeneity test (Q)	79.33	2225.46	20.44	88.99	11.24	337.5
df (Q)	6	87	2	9	1	24
p (Heterogeneity)	0.0001	0.0001	0.0001	0.0001	0.001604	0.0001
I^2	0.92	0.96	0.99	0.9	0.99	0.93

Source: Constructed based on data analysis

Path	EXP- >PU	CQ- >PU	SYQ- >PU	SA- >PU	SE->PU	CAB- >PU	ANX- >PU	COMPL- >PU
Number of samples	5	4	3	2	14	4	5	2
Total sample size	1825	2051	1313	719	3896	865	2100	685
Average Path Coefficient	0.29	0.2	0.16	0.23	0.21	0.21	-0.164	0.26
Standard deviation	0.136	0.0971	0.0824	0.1841	0.05545	0.09417	0.082	0.1972
95% Lower Limit	0.0211	0.0067	-0.0037	-0.1299	0.1052	0.0230	-0.3256	-0.1282
95% Upper Limit	0.5543	0.3873	0.3196	0.5921	0.3226	0.3922	-0.0040	0.6452
Z	2.1153	2.0288	1.9149	1.2545	3.8561	2.2043	-2.0085	1.3104
p (effect size)	0.0344	0.0424	0.055	0.2096	0.0001	0.0275	0.04459	0.19
Heterogeneity test (Q)	60.29	54.7	18.01	9.83	108.33	29.37	19.48	20.09
df (O)	4	3	2	1	13	3	3	1

0.00344

0.99

0.0001

0.88

0.0001

0.99

0.00043

0.99

0.0001

0.99

0.000245

0.99

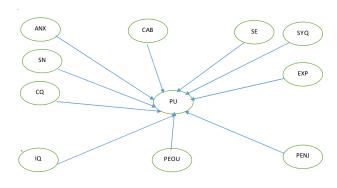
Table-49 : Summary of the effect size of the factor PU-2

Source: Constructed based on data analysis

0.0001

0.93

(Heterogeneity)


1^2

0.0001

0.94

From the above tables one can conclude that, factors CONF, RD, SYQ, and COMPL are not significant in explaining the behaviour of PU. Other factors, EXP, CQ, SE, CAB, ANX, PENJ, PEOU, IQ, and SN are significant in explaining the behaviour of PU. The following figure gives the modified paths for PU.

Figure-33: Paths for the factor PU

Source: Constructed based on tables- 48, 49

From the analysis, we suggest that the platform have to be designed in such-a-way that it will be useful for the learners/users. To achieve this, one has to design the platform that will give enjoyment to the learners, users feel ease in using the platform, the platform

gives information that is qualitative, gives the users learning to fulfil the social norms or pressures, gives one to use their experience in using the platform and considers their experience, provides the content that is qualitative, qualitative system, one should feel that they can learn on the platform on their own, should give deep learning experience so that they get totally absorbed in learning, and should not create more anxiety in using the system while choosing the elearning system Among these, PEOU is having higher impact with more than medium effect size, PENJ and SN have medium effect sizes, EXP has an effect size of 0.29 (medium effect), IQ has an effect size of 0.23, CQ, SE and CAB have almost equal effect sizes (above low effect sizes), SYQ has low effect size and ANX has negative impact on PU with the low effect size of -0.164. Note that, all the paths are significant and can be used while designing the e-learning platform.

We now present the analysis related to PEOU and the path coefficients are used to compute the necessary values and rebuild the model. The following table gives the path for the factor PEOU.

Table-50 : Paths for the PEOU

	PENJ	FC
		CAB
		SA
		EXP
		IQ
PEOU		CQ
PEOU		SQ
		SN/ SON/I
		ANX
		SE
		SERQ
		MSUP

Source: Constructed by the researcher based on table- 5

Using the path coefficients in the following tables, we compute the required values for testing the paths. Only those paths that are significant are considered in the calculations.

Table-51 : Path coefficients for the factor PEOU-1

Sample size	Path	Beta	Sig	SE	Sample size	Path	Beta	Sig	SE
159	FC->PEOU	0.457	S	0.13503	250	PENJ->PEOU	0.1370	S	0.05800
275	FC->PEOU	0.72	S	0.34891	181	PENJ->PEOU	0.7440	S	0.18569
132	FC->PEOU	0.593	S	0.07066	172	PENJ->PEOU	0.1500	S	0.05677
251	FC->PEOU	0.21	S	0.06249	437	PENJ->PEOU	0.3250	S	0.09722
139	FC->PEOU	0.373	S	0.09886	714	PENJ->PEOU	0.2390	S	0.11616
546	FC->PEOU	0.73	S	0.21866	354	PENJ->PEOU	0.2090	S	0.05311
					557	PENJ->PEOU	0.2790	S	0.04842
					286	PENJ->PEOU	0.2000	S	0.09694
					131	PENJ->PEOU	0.4500	S	0.13241
					230	PENJ->PEOU	0.1600	S	0.04756
					408	PENJ->PEOU	0.0670	NS	0.05501
					189	PENJ->PEOU	0.0780	S	0.53586
					119	PENJ->PEOU	0.4100	S	0.12033

Source: Constructed based on table- 5

Table-52 : Path coefficients for the factor PEOU-2

Sample	Path	Beta	Sig	SE	Sample	Path	Beta	Sig	SE
size					size				
250	ANX->PEOU	-0.1520	S	0.0670	500	SA->PEOU	0.254	S	0.0420
500	ANX->PEOU	-0.4240	S	0.0510	435	SA->PEOU	0.158	S	0.0558
714	ANX->PEOU	-0.1510	S	0.0734	345	SA->PEOU	0.302	S	0.1076
354	ANX->PEOU	0.0060	NS	0.0184	437	SA->PEOU	0.211	S	0.0631
286	ANX->PEOU	-0.1100	S	0.0533	100	SA->PEOU	0.32	NS	0.1863
546	ANX->PEOU	-0.2400	S	0.0719	251	SA->PEOU	0.28	S	0.0594
81	ANX->PEOU	-0.0600	NS	0.0361	284	SA->PEOU	-0.091	NS	0.0551
306	ANX->PEOU	-0.1280	NS	0.0621	628	SA->PEOU	0.22	S	0.0355
402	ANX->PEOU	-0.5200	S	0.1554					
408	ANX->PEOU	-0.1780	S	0.0503					
546	ANX->PEOU	-0.3400	S	0.1018					
114	ANX->PEOU	-0.2970	S	0.1117					
78	ANX->PEOU	-0.2200	S	0.0717					
172	ANX->PEOU	0.2300	S	0.0681					

Table-53 : Path coefficients for the factor PEOU-3

Sample	Path	Beta	Sig	SE	Sample	Path	Beta	Sig	SE
size	i dui	Deta	Jig	JL	size	1 441	Deta	Jig	JL
435	SN->PEOU	0.024	NS	0.0710	172	EXP->PEOU	0.07	S	0.0240
172	SN->PEOU	0.1	S	0.0378	354	EXP->PEOU	0.241	S	0.0606
1/2	314 >1 200		_			LXI >1 LOO		_	
354	SN->PEOU	0.237	S	0.0603	152	EXP->PEOU	0.312	S	0.0921
714	SN->PEOU	0.025	NS	0.0687	714	EXP->PEOU	0.496	S	0.1488
100	SN->PEOU	0.26	NS	0.1460	354	EXP->PEOU	-0.11	S	0.0441
251	SN->PEOU	0.63	S	0.0552	252	EXP->PEOU	0.078	NS	0.0910
115	SN->PEOU	0.21	S	0.0798	251	EXP->PEOU	-0.06	NS	0.0363
357	SN->PEOU	0.39	S	0.1482	332	EXP->PEOU	0.149	S	0.0567
628	SN->PEOU	-0.02	NS	0.0556	306	EXP->PEOU	0.363	S	0.1083
152	SN->PEOU	0.36	S	0.1125					
345	SN->PEOU	0.137	S	0.0181					

Table-54 : Path coefficients for the factor PEOU-4

Sample	Path	Beta	Sig	SE	Sample	Path	Beta	Sig	SE
size 181	SE->PEOU	0.3210	S	0.0801	size 563	IO->PEOU	-0.01	NS	0.0625
435	SE->PEOU	0.3210	S	0.0676	435	IQ->PEOU	0.154	S	0.0686
172	SE->PEOU	0.0300	NS	0.0534	557	IQ->PEOU	0.241	S	0.0525
345	SE->PEOU	0.4240	S	0.0845	115	IQ->PEOU	0.15	S	0.0685
110	SE->PEOU	0.4090	S	0.0878	412	IQ->PEOU	0.22	S	0.0942
354	SE->PEOU	0.4680	S	0.0663		12 120	0.22		0.00
437	SE->PEOU	0.0280	NS	0.0148					
152	SE->PEOU	0.5300	S	0.1565					
95	SE->PEOU	0.7500	S	0.3601					
714	SE->PEOU	0.2460	S	0.0939					
354	SE->PEOU	0.1350	S	0.0686					
100	SE->PEOU	0.4200	S	0.1227					
357	SE->PEOU	0.5720	S	0.0820					
251	SE->PEOU	0.2100	S	0.0625					
131	SE->PEOU	0.4100	S	0.1206					
251	SE->PEOU	-0.0400	NS	0.0870					
423	SE->PEOU	0.6100	S	0.1824					
326	SE->PEOU	0.2700	S	0.0806					
326	ISE->PEOU	0.1300	S	0.0630					
81	SE->PEOU	0.1500	NS	0.0901					
332	SE->PEOU	0.4130	S	0.1572					
224	SE->PEOU	0.2270	S	0.0861					
115	SE->PEOU	0.3900	S	0.1053					
249	SE->PEOU	0.3030	S	0.0902					
233	SE->PEOU	0.1700	S	0.0823					
306	SE->PEOU	0.0670	NS	0.0406					
402	SE->PEOU	0.1800	S	0.0538					
357	CSE->PEOU	0.6000	S	0.2279					
207	SE->PEOU	0.5600	S	0.1662					
328	CSE->PEOU	0.1300	S	0.0381					
328	ISE->PEOU	0.1100	S	0.0381					-

						4	
280	SE->PEOU	0.3160	S	0.1531			
628	SE->PEOU	0.4200	S	0.0619			
268	SE->PEOU	0.2400	S	0.0912			
155	SE->PEOU	0.3500	S	0.1323			
470	SE->PEOU	0.5670	S	0.0728			
233	SE->PEOU	0.2600	S	0.1259			
152	SE->PEOU	0.3000	S	0.1045			
225	SE->PEOU	0.3130	S	0.0930			
155	SE->PEOU	0.3600	S	0.0901			
204	SE->PEOU	0.18	S	0.0871			
233	CSE->PEOU	0.26	S	0.1259			
147	CSE->PEOU	0.37	S	0.1397			
214	SE->PEOU	0.55	S	0.2086			
184	CSE->PEOU	0.18	S	0.0682			
184	ISE->PEOU	0.46	S	0.1742			
1085	CSE->PEOU	0.4	S	0.1201			
156	CSE->PEOU	0.67	S	0.1979			
140	CSE->PEOU	0.54	S	0.1594			
152	CSE->PEOU	0.294	S	0.0868			
119	SE->PEOU	0.49	S	0.1438			
78	SE->PEOU	0.4	S	0.0974			

Source: Constructed based on table- 5

Table-55 : Path coefficients for the factor PEOU-5

Sample size	Path	Beta	Sig	SE	Sample size	Path	Beta	Sig	SE
435	CQ->PEOU	-0.062	NS	0.0540	563	SYQ->PEOU	0.0430	NS	0.0623
483	CQ->PEOU	0.194	S	0.0377	435	SYQ->PEOU	0.1010	S	0.0404
155	CQ->PEOU	0.287	S	0.0718	557	SYQ->PEOU	0.2860	S	0.1362
					546	SYQ->PEOU	0.8300	S	0.2486
					115	SYQ->PEOU	0.0500	NS	0.0769
					408	SYQ->PEOU	0.2200	S	0.0735
					412	SYQ->PEOU	0.6290	S	0.1881
					268	SYQ->PEOU	0.2300	S	0.0874

Table-56 : Path coefficients for the factor PEOU-6

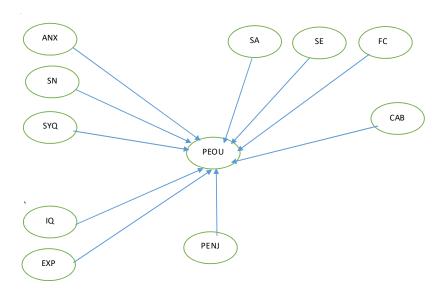
SE	0.0945	0.0824			
Sig	S	S			
Beta Sig	0.317	0.17			
Path	306 MS->PEOU 0.317 S 0.0945	357 MS->PEOU 0.17 S 0.0824			
Beta Sig SE Sample size	306	357			
SE	0.04	0990.0	0.0436	0.0804	0.2014
Sig	NS	S	S	S	S
Beta	-0.042	0.4200	-0.284	0.2500	0.5300
Path	563 SERQ->PEOU -0.042 NS	353 SERQ->PEOU 0.4200 S	557 SERQ->PEOU -0.284 S	115 SERQ->PEOU 0.2500 S	268 SERQ->PEOU 0.5300 S 0.2014
SE Sample size	563	353	257	115	268
SE	0.0893	0.0385	0.1174	0.1153	
Sig	S	S	S	S	
Beta Sig	0.3	0.1	0.31	0.24	
Path	251 CAB->PEOU 0.3	328 CAB->PEOU 0.1	184 CAB->PEOU 0.31	102 CAB->PEOU 0.24	
Sample size	251	328	184	102	

Source: Constructed based on table- 5

Table-57: Summary of the effect size of the factor PEOU-1

EXP->PEOU	5	1858	0.3	0.1252	0.0573	0.5485	2.4175	0.0156	45.41	4	0.0001	0.99
SN->PEOU	7	1964	0.29	0.106	0.0821	0.4979	2.7336	0.0062	184.77	9	0.0001	76:0
SA->PEOU	9	2596	0.25	0.1008	0.0526	0.4478	2.4814	0.013	96.72	5	0.0001	0.94
ANX->PEOU	6	3902	-0.25	0.0873	-0.4232	-0.0807	-2.8839	0.0039	118.57	8	0.0001	0.93
PENJ->PEOU	11	3620	0.28	0.0762	0.1318	0.4309	3.6877	0.0002	117.21	10	0.0001	0.91
FC- >PEOU	9	1502	0.49	0.1916	0.1177	0.8689	2.5744	0.01	92.7	5	0.0001	0.95
Path	Number of samples	Total sample size	Average Path Coefficient	Standard deviation	95% Lower Limit	95% Upper Limit	Z	p (effect size)	Heterogeneity test (Q)	df (Q)	p (Heterogeneity)	١٨2

Source: Constructed based on data analysis


Table-58 : Summary of the effect size of the factor

Path	SE- >PEOU	IQ- >PEOU	CQ->PEOU	SYQ- >PEOU	SERQ- >PEOU	CAB- >PEOU	MS- >PEOU
Number of samples	47	4	2	6	4	4	2
Total sample size	12891	1519	638	2656	1293	865	663
Average Path Coefficient	0.35	0.19	0.24	0.33	0.21	0.23	0.24
Standard deviation	0.047	0.093	0.1731	0.114	0.1739	0.1143	0.1798
95% Lower Limit	0.2575	0.0067	-0.1003	0.1044	-0.1343	0.0066	-0.1102
95% Upper Limit	0.4420	0.3727	0.5784	0.5514	0.5475	0.4546	0.5947
Z	7.4302	2.0314	1.3808	2.8760	1.1877	2.0176	1.3473
p (effect size)	0.0001	0.042	0.1673	0.004	0.2349	0.04363	0.17789
Heterogeneity test (Q)	610.97	31.69	18.23	41.94	63.9	22.17	8.23
df (Q)	46	3	1	5	3	3	1
p (Heterogeneity)	0.0001	1E-04	0.0001	0.0001	0.00001	0.00012	0.00823
I^2	0.92	0.99	0.99	0.99	0.99	0.99	0.99

Source: Constructed based on data analysis

The following figure gives the modified paths for PEOU and the same will be used to build the final model.

Figure-34 : Modified paths for the factor PEOU

Source: Constructed based on the tables- 57, 58

From the analysis we conclude that except for CQ, SERQ, and MS all other factors are significant in explaining the behaviour of PEOU in the model. Among the factors, FC has almost high effect size, followed by SE, SYQ, EXP, SN, PENJ, SA, CAB, IQ, and ANX. Hence while designing an e-learning platform, one has to consider these factors. If one wants the platform to be adopted, it should be designed in sucha-way that it is used with ease. To achieve this, one has to develop the platform such that an organization or institute where the learner is working supports them to learning through the platform. Similarly, other factors have to be considered to build an effective platform.

The next factor in the sequence is PENJ and only PEOU is the factor that impacts PENJ.

Table-59 : Path for the factor PENJ

Intrinsic Factor	Intrinsic Factor	Related Factors
PENJ	PEOU	

Source: Constructed by the researcher based on table- 5

Using the following tables, we compute the necessary values to test its significance in the model.

Table-60 Path coefficients for the factor PENJ

Sample size	Path	Beta	Sig	SE
225	PEOU->PENJ	0.268	S	0.051598
249	PEOU->PENJ	0.195	S	0.094447
483	PEOU->PENJ	0.108	S	0.043584
328	PEOU->PENJ	0.23	S	0.041071
451	PEOU->PENJ	0.35	S	0.053763
544	PEOU->PENJ	0.52	S	0.057269

Source: Constructed based on table- 5

Table-61: Summary of the effect size of the factor PENJ

	T.
Path	PEOU->PENJ
Number of samples	6
Total sample size	2280
Average Path Coefficient	0.28
Standard deviation	0.1222
95% Lower Limit	0.039185927
95% Upper Limit	0.518362476
Z	2.2806
p (effect size)	0.02257
Heterogeneity test (Q)	161.57
df (Q)	5
p (Heterogeneity)	0.00001
I^2	0.97

Source: Constructed based on data analysis

From the above table, we conclude the PEOU is significant in understanding the behaviour of PENJ. That is, if one feels that the platform is easy to use, they may feel that they may enjoy in using the platform for learning.

We now present the analysis for perceived satisfaction and in similar lines we use only those paths that are significant in calculating the needed measures. The following table gives the paths for PS.

Table-62 : Paths for the factor PS

Intrinsic Factor	Intrinsic Factor	Related Factors
	PU	CONF
	PEOU	IQ
		SYQ
PS		SERQ
		SE

Source: Constructed by the researcher based on table- 5

Table-63 : Path coefficients for the factor PS-1

Sample size	Path	Beta	Sig	SE	Sample size	Path	Beta	Sig	SE
563	PU->PS	0.277	S	0.0417	386	PEOU->PS	0.203	S	0.0530
386	PU->PS	0.184	S	0.0580	210	PEOU->PS	0.335	S	0.0695
210	PU->PS	0.494	S	0.0640	408	PEOU->PS	0.201	S	0.0462
423	PU->PS	0.93	S	0.2781	412	PEOU->PS	0.564	S	0.1686
408	PU->PS	0.723	S	0.0542	184	PEOU->PS	0.23	S	0.0871
412	PU->PS	0.386	S	0.1154					
363	PU->PS	0.586	S	0.1750					
193	PU->PS	0.49	S	0.1453					
340	PU->PS	0.316	S	0.1200					
124	PU->PS	0.47	S	0.1381					
184	PU->PS	0.23	S	0.0871					
187	PU->PS	0.339	S	0.1005					

Source: Constructed based on table- 5

Table-64 : Path coefficients for the factor PS-2

Sample size	Path	Beta	Sig	SE	Sample size	Path	Beta	Sig	SE
363	CONF->PS	0.2830	S	0.0845	386	IQ->PS	0.1840	S	0.0580
184	CONF->PS	0.3900	S	0.1155	390	IQ->PS	0.2900	S	0.1105
187	CONF->PS	0.5140	S	0.1523	250	IQ->PS	0.3700	S	0.0936
					193	IQ->PS	0.0800	NS	0.0484
					289	IQ->PS	0.2000	S	0.0969
					184	IQ->PS	0.4100	S	0.1553

Source: Constructed based on table- 5

Table-65 : Path coefficients for the factor PS-3

Sample size	Path	Beta	Sig	SE	Sample size	Path	Beta	Sig	SE	Sample size	Path	Beta	Sig	SE
386	SYQ->PS	0.1570	S	0.0610	563	SERQ->PS	0.0770	S	0.0262	386	SE->PS	0.2490	S	0.0580
390	SYQ->PS	0.2900	S	0.1105	390	SERQ->PS	0.2100	S	0.0800	187	CSE->PS	0.1320	S	0.0500
250	SYQ->PS	0.2000	S	0.0601	250	SERQ->PS	0.2000	S	0.0667					
193	SYQ->PS	0.3500	S	0.1038	289	SERQ->PS	0.0800	NS	0.0485					
289	SYQ->PS	0.1500	S	0.0727	184	SERQ->PS	0.1600	S	0.0606					
184	SYQ->PS	0.2700	S	0.1023		•								

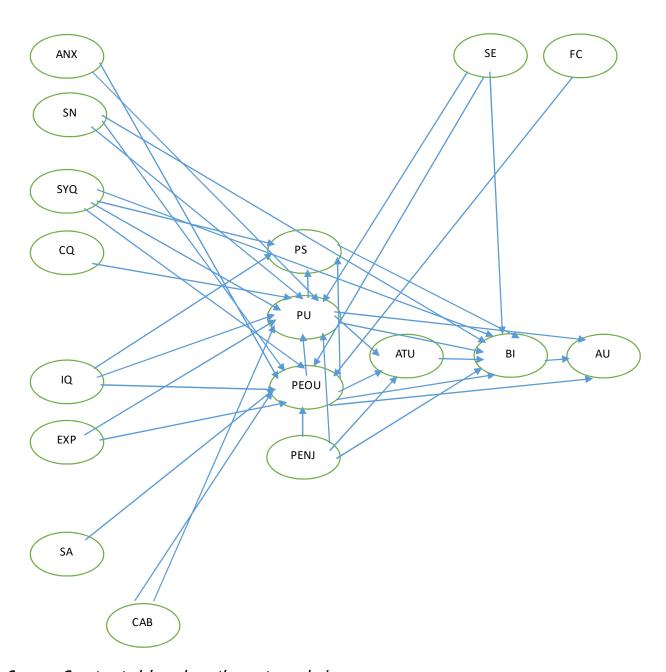
Table-66 : Summary of the effect size of the factor PS

Path	PU->PS	PEOU- >PS	CONF->PS	IQ- >PS	SYQ- >PS	SERQ- >PS	SE->PS
Number of samples	12	5	3	5	6	3	2
Total sample size	3793	1600	734	1499	1692	1387	573
Average Path Coefficient	0.44	0.29	0.39	0.28	0.23	0.19	0.19
Standard deviation	0.1295	0.1192	0.2232	0.1249	0.0916	0.1093	0.1409
95% Lower Limit	0.1860	0.0580	-0.04596	0.0403	0.0520	-0.0249	-0.0863
95% Upper Limit	0.6938	0.5255	0.829067	0.5300	0.4114	0.4037	0.4660
Z	3.3960	2.4466	1.754096	2.2822	2.5271	1.7324	1.3475
p (effect size)	0.00068	0.01442	0.079414	0.0224	0.0115	0.0832	0.1778
Heterogeneity test (Q)	318.59	58.13	22.70	34.34	39.31	15.2	13.54
df (Q)	11	4	2	4	5	2	1
p (Heterogeneity)	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0004
I^2	0.96	0.93	0.99	0.99	0.99	0.99	0.99

Source: Constructed based on data analysis

The above table indicates that all except CONF, SERQ and SE, all other factors are significant in studying the behaviour of PS. Hence, one has to consider all

other factors while building a platform that gives learning satisfaction to the learners/users. The following figure gives the modified paths for PS.


Figure-34 : Paths for the factor PS

'Source: Constructed based on table- 66

Based on the entire analysis, we now present the final model that has significant paths explaining the dependent factors and also other intrinsic factors.

Figure-35: Final model for E-learning adoption

Source: Constructed based on the meta-analysis

11. Conclusion

The main objective of the study is to synthesize the results found by researchers over the years and present a comprehensive model that will help one know the factors that may impact the choice of an elearning platform. TAM and Extended TAM are the main model considered in the study and related

studies have been considered. We used meta-analysis to achieve this objective and considered 128 studies that have either used TAM or Extended TAM. Few are based on meta-analysis but have not taken the recent developments and the current study will fill that gap. The factors are usually divided into extrinsic and intrinsic. From the studies considered, we have

identified the paths between the factors and the corresponding path coefficients. Note that, paths are considered if they are reported in at least two studies and are significant. Insignificant paths have not been considered. These path coefficients or beta coefficients are the effect sizes and the same have been used in meta-analysis. We have considered a random-effect model with the assumption that the effect sizes across the studies are different. The mean effect size for each path is computed and tested for its significance using Z-test and, Q-statistic and Isquare are computed to check the homogeneity of the effect sizes. From the two statistics we note that, the effect sizes are heterogenous and hence the use of random-effect model is justified. We finally have identified those paths that are significant and excluded those paths that are not significant. The paths for each of the factors are constructed and the final model is built. We use system and platform alternatively indicating an e-learning system or platform.

We draw the following conclusions from the analysis:

- 1. The actual usage of the platform is significantly dependent on one's intention to use it, how one perceives it as useful for them for learning and how one perceives that it is easy to use the platform for learning. Interestingly all the three have almost similar effects on AU. But, from the 95% confidence interval we note that PEOU has higher impact than other two factors.
- We conclude that one's attitude to use the platform is influenced by PU, PEOU and PENJ.
 Among the three, PU has higher effect on ATU, followed by PEOU and PENJ.
- 3. One's behavioral intention (BI) is dependent on intrinsic factors PEOU, PU, PENJ and PS. Among the extrinsic factors, BI is dependent on SYQ, SN, ATU and SE. From the analysis we conclude that, ATU has higher impact on BI. That is, if one designs a platform that will create a positive opinion, then there are higher chances that the learner may actually use the platform.

- 4. Among the factors that influence PU, PEOU has higher impact, followed by SN, PENJ etc. That is, a platform that is easy to use may make learners more comfortable and make them feel that it is useful for their learning. Also, a platform that fulfills the social obligations of the learners may create a perception that it is useful for them and if the learning process is enjoyable, then they may perceive that it is useful for them.
- 5. Among the factors that influence PEOU, FC has higher effect size than other factors. That is, if the organization or institute provides facilities (technical or non-technical) or opportunities for one to use the platform, then one may feel that it is easy to use the platform for learning. The other factors that influence PEOU are IQ, EXP, SYQ, SN, ANX, SA, SE, CAB and PENJ. Interestingly ANX has a negative impact on PEOU. This may be due to the fact that, if a person is so anxious in using the platform, then it may reduce his ease in using the platform.
- 6. PENJ is influenced only by PEOU. This implies that, if learning through the platform is easy, then one can enjoy the learning process.
- 7. PU has evolved as the factor that has high influence on PS. That is, if an e-learning platform makes one feel that it is useful for learning, then it creates a perception of satisfaction on using the platform.

Finally, we conclude that, new factors and their link with other factors (paths) have to be taken into consideration while designing an e-learning platform.

We now present the managerial implications of the study.

12. Managerial Implications

From the study, we present the following managerial implications:

1. In order to predict the actual usage of the system

by the learners, one has to design an e-learning platform that will create a perception in the minds of the users that the platform is useful (PU) for them and easy to use (PEOU). Also, design a platform that creates an intention (BI) of usage in the minds of the user and this should motivate them to actually use the system.

- 2. In order to create an attitude amongst the users to use the system, one has to design a platform that will create a perception in the mind of the users that the platform is useful to them for learning and easy to use. One also has to create a perception in the minds of the users that the platform gives them enjoyment of learning.
- 3. To create an intention to use the platform, one has to take design it in such a way that the platform should be useful for learning, easy to use the platform for learning, should create a sense of satisfaction, the learning platform should be qualitative, should provide the learning opportunity such that it will help one to fulfill the social pressures or requirement, should make the learning enjoyable, should build an attitude to use the system or platform and should make one feel that they are capable of using the platform. A platform with these features can create an intention in one's mind to use the platform for learning.
- 4. In order to make one feel that the e-learning platform is useful for learning, one has to design the platform such that it should not create more anxiety while using the platform. If it creates more anxiety, then there is a chance of not using the platform for learning. It should be designed such that, it gives a learning that will fulfil the social obligations, content given should be qualitative, information provided should be qualitative, it should make one feel that using platform is easy, should make the learning enjoyable, should give value to the prior

- experience one has and also one should feel that their experience can be used while learning, the platform should be qualitatively designed, and should make one feel that they are capable of using the platform.
- 5. In order to make the platform easy to use, one has to design the platform such that it should not create anxiety in the minds of the users on usage of the platform, should fulfil the social norms, should be a qualitative platform, provides qualitative information, should take one's prior experience into consideration, should make the learning enjoyable, the platform should be designed such that it absorbs the learner completely and make them totally involved in the learning, platform should be designed in such-a-way that the organizations or institutes will get motivated to provide necessary support (technical or non-technical) for the learning process, should make one feel that they are capable of handling the platform, platform should be accessible and make one to extract the required information for learning.
- 6. In order to make the learners satisfied of the platform, one has to design it in such-a-way that it will be qualitative (overall), information given in it is qualitative, it should be useful and should be easy to use it.
- 7. In order to make the system enjoyable, one has to ensure that it will be easy to use.

Taking the above suggestions, one can design an elearning platform and make the learning effective. These suggestions can be taken even by the learners/users while selecting a platform for learning, teachers while getting into an agreement to float a course, developers for designing the platform, employers to encourage their employees to take up the platform for learning.

13. Limitations and Future Work

In this section, we present the limitations of the current work and also the future work that fills the limitations of the study.

The current study is taken up to find the factors that motivate one to choose the e-learning system for learning. Among different models, technology acceptance model (TAM) is the most frequently used model to identify the factors. These factors are related to the perception of the learners/users towards e-learning system and helps one to understand the behaviour of the users better. Over the years, researchers have extended the model by linking other factors and this has given one an opportunity to understand the behaviour of the learners further. Several studies have been conducted and have proposed several factors.

The current study is an attempt to synthesize these results and build a comprehensive model. It has mainly considered TAM but not other models like UTAUT, UTAUT2, TRA, TPB etc. Also, the study is not generic in nature do not take general factors into consideration. One can also take up demographic factors and study the impact of the same on the factors. The model built in this study can be tested by taking primary data from learners. The study has taken only data related to students but nor other users (employees, trainers, developers etc) and one can take up studies to identify the factors from their viewpoint. Not many studies have been conducted in the Indian context and one can take up the studies in the Indian context. One can also conduct a study that integrates TAM and other models, to identify other factors and paths that are significant. For example, integrating TAM with TPB. The study doesn't look at moderating and mediating effects of relevant factors and one can take up the same. One can also construct models related to different geographical regions and compare them to find the differences in the factors. One can look at institutes and their requirements and build models.

References related to e-learning

- Mohamed Abugharsa, et al (2019)., A Modified Technology Acceptance Model to Analyze the Usage of Internet-Based Education Tool in Primary Schools in Libya. Australian Journal of Basic and Applied Sciences, 13(1): 28-43. DOI: 10.22587/ajbas.2019.13.1.5.
- Andrea, T. (2019): An extended TAM model, for evaluating eLearning acceptance, Digital learning and smart tool usage. Acta Polytechnica Hungarica Vol. 16, No. 9, pp. 213-233.
- Sukainah, Andi & Reski, P & Fadilah, R & Mustarin, A. (2019). Application of Technology Acceptance Model to E-learning Assessment (Kelase) in Agricultural Technology Education, UniversitasNegeri Makassar. Journal of Physics: Conference Series. 1387. 012115. 10.1088/1742-6596/1387/1/012115.
- Gaurav Chopra, Pankaj Madan, Piyush Jaisingh, Preeti Bhaskar, (2019) "Effectiveness of elearning portal from students' perspective: A structural equation model (SEM) approach", Interactive
- Technology and Smart Education, https://doi.org/ 10.1108/ITSE-05-2018-0027.
- Marzieh Rafiee & Salman Abbasian-Naghneh (2019): E-learning: development
- of a model to assess the acceptance and readiness of technology among language learners,
- Computer Assisted Language Learning, DOI: 10.1080/09588221.2019.1640255.
- Farhan, Wejdan & Razmak, Jamil & Demers, Serge & Laflamme, Simon. (2019). E-learning systems versus instructional communication tools: Developing and testing a new e-learning user interface from the perspectives of teachers and students. Technology in Society. 59. 101192. 10.1016/j.techsoc.2019.101192.
- Al-Fraihat, Dimah & Joy, Mike & Masa'deh, Ra'Ed & Sinclair, Jane. (2019). Evaluating E-learning Systems Success: An Empirical Study. Computers in Human Behavior. 102. 10.1016/j.chb.2019.08.004.
- Kerži?, Damijana & Tomaževi?, Nina & Aristovnik, Aleksander & Umek, Lan. (2019). Exploring critical factors of the perceived usefulness of blended learning for higher education students. PLoS ONE. 14. e0223767. 10.1371/ journal.pone.0223767.

- A Study on Identifying the Factors Associated with the E-learning: Using Meta-Analytic Approach
- Salloum, Said & AlHamad, Ahmad & Al-Emran, Mostafa & Monem, Azza & Shaalan, Khaled. (2019). Exploring Students' Acceptance of E-learning through the Development of a Comprehensive Technology Acceptance Model. IEEE Access. PP. 1-1. 10.1109/ACCESS.2019.2939467.
- Kimathi, F. A., & Zhang, Y. (2019). Exploring the General
- Extended Technology Acceptance Model for e-Learning Approach on Student's
- Usage Intention on e-Learning System in University of Dar es Salaam. Creative Education, 10, 208-223. https://doi.org/10.4236/ce.2019.101017.
- Revythi, Anastasia & Tselios, Nikolaos. (2019). Extension of Technology Acceptance Model by using System Usability Scale to assess behavioral intention to use e-learning. Education and Information Technologies. 10.1007/s10639-019-09869-4.
- Abanda Maga, Marie Florence & Fosso Wamba, Samuel & Tcheuffa, Nitcheu & Jean Robert, Kala Kamdjoug. (2019). Factors Affecting Adoption and Use of E-Learning By Business Employees In Cameroon.
- Al-Rahmi, Waleed & Yahaya, Noraffandy & Aldraiweesh, Ahmed & Alamri, Mahdi & Aljarboa, Nada & Alturki, Uthman & Aljeraiwi, Abdulmajeed. (2019). Integrating Technology Acceptance Model with Innovation Diffusion Theory: An Empirical Investigation on Students' Intention to Use E-Learning Systems. IEEE Access. PP. 1-1. 10.1109/ACCESS.2019.2899368.
- Ji, Zhi & Yang, Zhenhua & Liu, Jianguo & Yu, Changrui. (2019). Investigating Users' Continued Usage Intentions of Online Learning Applications. Information. 10. 198. 10.3390/info10060198.
- Marandu, Edward & Makudza, Forbes & Ngwenya, Sothini. (2019). Predicting Students' Intention and Actual Use of E-Learning Using the Technology Acceptance Model: A Case from Zimbabwe. International Journal of Learning, Teaching and Educational Research. 18. 110-127. 10.26803/ijlter.18.6.7.
- Wang LY, Lew SL, Lau SH, Leow MC. Usability factors predicting continuance of intention to use cloud e-learning application. Heliyon. 2019 Jun;5(6):e01788. DOI: 10.1016/j.heliyon.2019.e01788.
- Valencia-Arias, Alejandro & Chalela, Salim & Bermúdez-Hernández, Jonathan. (2019). A proposed model of e-learning tools acceptance

- among university students in developing countries. Education and Information Technologies. 24. 1057-1071. 10.1007/s10639-018-9815-2.
- Ayele, Abinew & Birhanie, Worku. (2018). Acceptance and use of e-learning systems: the case of teachers in technology institutes of Ethiopian Universities. Applied Informatics. 5. 10.1186/s40535-018-0048-7.
- Irene Esteban-Millat, Francisco J. Martínez-López, Maria Pujol-Jover,
- Juan Carlos Gázquez-Abad & Alejandro Alegret (2018): An extension of the technology
- acceptance model for online learning environments, Interactive Learning Environments, DOI:
- 10.1080/10494820.2017.1421560.
- Muhammad Ali, Syed Ali Raza, Wasim Qazi, Chin-Hong Puah, "Assessing the e-learning system in higher education institutes: evidence from structural equation modelling", Interactive Technology and Smart Education, https://doi.org/10.1108/ ITSE-02-2017-0012.
- Vululleh, P. (2018). Determinants of students' e-learning acceptance in developing countries: An approach based on Structural Equation Modeling (SEM). International Journal of Education and Development using ICT, 14(1),. Open Campus, The University of the West Indies, West Indies. Retrieved February 23, 2020 from https://www.learntechlib.org/p/183560/.
- Angela, chatrine sylvia, handoko, edi abdurachman (2018): e-learning acceptance analysis using technology acceptance model (TAM) (case study: stmik mikroskil). Journal of Theoretical and Applied Information Technology 15th October 2018. Vol.96. No 19.
- Bryan, L. (2018). E-learning Policies and E-learning Acceptance and Usage. ORSEA JOURNAL.
- Tove Bøe (2018): E-learning technology and higher education: the impact of
- organizational trust, Tertiary Education and Management, DOI: 10.1080/13583883.2018.1465991.
- Alharbi, H. and Sandhu, K. (2018) 'Explaining and predicting continuance usage intention of elearning recommender systems: an empirical evidence from Saudi Arabia', Int. J.
- Business Information Systems, Vol. 29, No. 3, pp.297-

323.

- Hammouri, Qais & Abu-Shanab, Emad. (2018). Exploring Factors Affecting Users' Satisfaction Toward E-Learning Systems. International Journal of Information and Communication Technology Education. 14. 44-57. 10.4018/ IJICTE.2018010104.
- A. Hanif, F. Q. Jamal and M. Imran, (2018).Extending the Technology Acceptance Model for Use of e-Learning Systems by Digital Learners. IEEE Access, vol. 6, pp. 73395-73404.
- Yakubu, Nas & Dasuki, Salihu. (2018). Factors affecting the adoption of e-learning technologies among higher education students in Nigeria: A structural equation modelling approach. Information Development. 026666691876590. 10.1177/0266666918765907.
- Wirawan, Adhicipta. (2018). Factors influencing accounting students in acceptance of e-learning. 10.2991/insyma-18.2018.53.
- Liu, Ze & Wei, Zhenhua. (2019). Research on Chinese College Students' Using Behavior towards Elearning Services Based on Improved TAM Model. 10.2991/ssphe-18.2019.18.
- Ameen, Nisreen & Willis, Robert & Abdullah, Media & Shah, Mahmood. (2018). Towards the successful integration of e?learning systems in higher education in Iraq: A student perspective. British Journal of Educational Technology. 10.1111/bjet.12651.
- Parsazadeh, Nadia & Megat, Norziha & Ali, Rosmah & Rezaei, Mehran. (2018). An Empirical Study of Students' Perceptions on the Technological Aspects of the E-Learning System. 25-38. 10.22108/jcs.2018.106885.0.
- Ibrahim, Roslina & Leng, N & Yusoff, R & Samy, G & Masrom, Suraya & Rizman, Z. (2017). E-LEARNING ACCEPTANCE BASED ON TECHNOLOGY ACCEPTANCE MODEL. Journal of Fundamental and Applied Sciences. 9. 871-889. 10.4314/jfas.v9i4s.50.
- Oliveira, Tiago & Felice, Massimo & Aparicio, Manuela. (2018). E-learning success determinants: Brazilian empirical study. Computers & Education. 122. 273-290. 10.1016/j.compedu.2017.12.001.
- Garcia, Manuel. (2017). E-Learning Technology Adoption in the Philippines: An Investigation of Factors Affecting Filipino College Students' Acceptance of Learning Management Systems.

- The International Journal of E-Learning and Educational Technologies in the Digital Media. 3. 118-130. 10.17781/P002374.
- Ching-Ter C., Su C.-R. & Hajiyev J., Examining the students' behavioral
- intention to use e-learning in Azerbaijan? The General Extended Technology Acceptance Model for Elearning approach, Computers & Education (2017), doi: 10.1016/j.compedu.2017.04.010.
- Kanwal, Faria & Rehman, Mariam. (2017). Factors Affecting E-Learning Adoption in Developing Countries-Empirical Evidence from Pakistan's Higher Education Sector. IEEE Access. PP. 1-1. 10.1109/ACCESS.2017.2714379.
- Bello Zainab, Muhammad Awais Bhatti & Mohammed Alshagawi (2017):
- Factors affecting e-training adoption: an examination of perceived cost, computer selfefficacy and the technology acceptance model, Behaviour & Information Technology, DOI:
- 10.1080/0144929X.2017.1380703
- Jovic, Marija & Kostic-Stankovic, Milica & Neškovi?, Ema. (2017). Factors Affecting Students? Attitudes towards E-Learning. Management:Journal of Sustainable Business and Management Solutions in Emerging Economies. 22. 73. 10.7595/ management.fon.2017.0016.
- Chinyamurindi, Willie. (2017). Factors influencing student usage of an online learning community: the case of a rural South African university. International Journal of Educational Development. 8. 116-132. 10.1504/IJEED.2017.10007369.
- Al-Azawei, Ahmed & Parslow, Patrick & Lundqvist, Karsten. (2016). Investigating the effect of learning styles in a blended e-learning system: An extension of the technology acceptance model (TAM). Australasian Journal of Educational Technology. 2017. 1-23. 10.14742/ ajet.2758.
- Hussein, Zuhal. (2017). Leading to Intention: The Role of Attitude in Relation to Technology Acceptance Model in E-Learning. Procedia Computer Science. 105. 159-164. 10.1016/j.procs.2017.01.196.
- Tsai, Yueh-Ying & Chao, Cheng-Min & Lin, Hong-Mau & Cheng, Bor-Wen. (2017). Nursing staff intentions to continuously use a blended e-

- A Study on Identifying the Factors Associated with the E-learning: Using Meta-Analytic Approach
 - learning system from an integrative perspective. Quality & Quantity. 52. 10.1007/s11135-017-0540-5.
- Ritter, N. L. (2017). Technology acceptance model of online learning management systems in higher education: A meta-analytic structural equation model. International Journal of Learning Management Systems, 5, 1-15. doi:10.18576/ ijlms/050101
- Priyanto, Priyanto. (2017). The determinats of elearning usage by teachers of vocational high schools in the Yogyakarta Special Region. Jurnal Pendidikan Vokasi. 7. 1-13. 10.21831/jpv.v7i1.12770.
- Sensuse, Dana & Napitupulu, Darmawan. (2017). The Study of User Acceptance Toward E-Learning System in Higher Education. Indonesian Journal of Electrical Engineering and Computer Science. 7. 466. 10.11591/ijeecs.v7.i2.pp466-473.
- Mittal, Sanjiv. (2018). Understanding Factors Affecting University Student's Adoption of E-learning Systems in NCR. 10.1007/978-3-319-58589-5 14.
- Boateng, Richard & Sekyere Mbrokoh, Alfred & Boateng, Sheena & Senyo, P K & Ansong, Eric. (2016). Determinants of e-learning adoption among students of developing countries. International Journal of Information and Learning Technology. 33. 248-262. 10.1108/IJILT-02-2016-0008.
- Alsabawy, Ahmed & Cater-Steel, Aileen & Soar, Jeffrey. (2016). Determinants of perceived usefulness of e-learning systems. Computers in Human Behavior. 64. 843-858. 10.1016/j.chb.2016.07.065.
- Abdullah, F., & Ward, R. (2016). Developing a General Extended Technology Acceptance Model for E-Learning (GETAMEL) by Analysing Commonly Used External Factors. Computers in Human Behavior, 56, 238-256.
- Tamer Abbas , (2016), "Social factors affecting students' acceptance of e-learning environments in
- developing and developed countries", Journal of Hospitality and Tourism Technology, Vol. 7 Iss 2 pp.200 212.
- Al-Gahtani, Said. (2014). Empirical Investigation of E-Learning Acceptance and Assimilation: A Structural Equation Model. Applied Computing and Informatics. 4. 10.1016/j.aci.2014.09.001.

- Moreno, Valter & Cavazotte, Flavia & Alves, Isabela. (2016). Explaining university students' effective use of e-learning platforms: Effective use of e-learning platforms. British Journal of Educational Technology. 48. 10.1111/bjet.12469.
- Ghosh, B. & Pries, J.. (2013). Exploratory study of effects of learning system acceptance on learning program outcomes: Fusing the technology acceptance and technology mediated learning models. 95-100.
- Elkaseh, Ali & Wong, Kok & Fung, Chun. (2016).
 Perceived Ease of Use and Perceived Usefulness
 of Social Media for e-Learning in Libyan Higher
 Education: A Structural Equation Modeling
 Analysis. International Journal of Information
 and Education Technology. 6. 192-199. 10.7763/
 IJIET.2016.V6.683.
- Ramirez-Anormaliza, Richard & Sabate, Ferran & Llinás-Audet, Xavier. (2016). The acceptance and use of the e-learning systems among the university teachers in Ecuador. 10.21125/edulearn.2016.1836.
- Ngo Nhu Tran, Khanh. (2016). The Adoption of Blended E-learning Technology in Vietnam using a Revision of the Technology Acceptance Model. Journal of Information Technology Education: Research. 15. 253-282. 10.28945/ 3522.
- Ramírez-Correa PE, Arenas-Gaitán J, Rondán-Cataluña FJ (2015) Gender and Acceptance of E-Learning: A Multi-Group Analysis Based on a Structural Equation Model among College Students in Chile and Spain. PLoS ONE 10(10): e0140460. https://doi.org/10.1371/journal.pone.0140460.
- Kang, Minseok & Shin, Won Sug. (2015). An Empirical Investigation of Student Acceptance of Synchronous E-Learning in an Online University. Journal of Educational Computing Research. 52. 10.1177/0735633115571921.
- Chinyamurindi, W. & Shava, H., 2015, 'An investigation into e-learning acceptance
- and gender amongst final year students', South African Journal of Information
- Management 17(1), Art. #635, 9 pages. htp://dx.doi.
- Ho, Candy & Ke, Weiling & Liu, Hefu. (2014). Choice Decision of E-Learning System: Implications from Construal Level Theory. Information & Management. 52. 10.1016/j.im.2014.07.003.

- Abu-Shanab, Emad & Ababneh, Laila & Student, Graduate. (2015). Exploring Academicians Acceptance of E-Learning Using an Extended TAM: The Case of Yarmouk University. 1.
- Paluri, Ratna & Mehra, Saloni. (2015). Exploring the acceptance for e-learning using technology acceptance model among university students in India. International Journal of Process Management and Benchmarking. 5. 194-210. 10.1504/IJPMB.2015.068667.
- Mohammadi, Hossein. (2015). Factors affecting the elearning outcomes: An integration of TAM and IS success model. Telematics and Informatics. 32. 701-719. 10.1016/j.tele.2015.03.002.
- Samsudeen, Sabraz Nawaz & Thowfeek, Mohamed Hussain & Rashida, Fathima. (2015). School Teachers' Intention to Use E-Learning Systems in Sri Lanka: A Modified TAM Approach. Information and Knowledge. 5. 54-59.
- Calisir, Fethi & Altin, Cigdem & Bayraktaroglu, Ayse & Karaali, Demet. (2014). Predicting the Intention to Use a Web-Based Learning System: Perceived Content Quality, Anxiety, Perceived System Quality, Image, and the Technology Acceptance Model. Human Factors and Ergonomics in Manufacturing & Service Industries. 24. 10.1002/hfm.20548.
- Ramirez-Anormaliza, R., Sabaté, F., Llinàs-Audet, X., & Lordan, O. (2017). Aceptación y uso de los sistemas e-learning por estudiantes de Grado de Ecuador: El caso de una universidad estatal. Intangible Capital, 13(3),
- Lee, Yi-Hsuan & Hsiao, Chan & Purnomo, Hadi. (2014). An empirical examination of individual and system characteristics on enhancing e-learning acceptance. Australasian Journal of Educational Technology. 30. 562-579. 10.14742/ajet.381.
- Tan, M. and Shao, P. (2014): A study on the factors influencing learners' acceptance of E-learning system. BTAIJ, 10(18), 10625-10631.
- Agudo-Peregrina, Angel & Hernández-García, Ángel & Pascual-Miguel, Félix. (2014). Behavioral intention, use behavior and the acceptance of electronic learning systems: Differences between higher education and lifelong learning. Computers in Human Behavior. 34. 301-314. 10.1016/j.chb.2013.10.035.
- Wu, Bing & Zhang, Chenyan. (2014). Empirical study on continuance intentions towards E-Learning 2.0 systems. Behaviour & Information

- Technology. 33. 1027-1038. 10.1080/0144929X.2014.934291.
- Tarhini, Ali & Hone, Kate & Liu, Xiaohui. (2014).

 Measuring the Moderating Effect of Gender and Age on E-Learning Acceptance in England: A Structural Equation Modeling Approach for an Extended Technology Acceptance Model.

 Journal of Educational Computing Research. 51. 163-184. 10.2190/EC.51.2.b.
- Yung-Ming Cheng, (2014), "Roles of interactivity and usage experience in e-learning acceptance: a
- longitudinal study", International Journal of Web Information Systems, Vol. 10 Iss 1 pp. 2 23.
- P Namisiko, C Munialo, S Nyongesa (2014). Towards an optimization framework for e-learning in developing countries: A case of private universities in Kenya. Journal of Computer Science and Information Technology 2 (2), 131-148.
- Inma Rodríguez-Ardura & Antoni Meseguer-Artola (2014): What leads people to keep on elearning? An empirical analysis of users' experiences and their effects on continuance intention, Interactive Learning Environments, DOI: 10.1080/10494820.2014.926275.
- Tarhini, Ali & Hone, Kate & Liu, Xiaohui. (2013). Factors Affecting Students' Acceptance of e-Learning Environments in Developing Countries: A Structural Equation Modeling Approach. International Journal of Information and Education Technology. 3. 54-59. 10.7763/ IJIET.2013.V3.233.
- Yi-Hsuan Lee, Yi-Chuan Hsieh & Yen-Hsun Chen (2013) An investigation of employees' use of elearning systems: applying the technology acceptance model, Behaviour & Information Technology, 32:2, 173-189, DOI: 10.1080/0144929X.2011.577190.
- Rym, Bouzaabia & Bouzaabia, Olfa & Mélika, Ben. (2013). Determinants of E-Learning Acceptance: An Empirical Study in the Tunisian Context. American Journal of Industrial and Business Management. 03. 307-321. 10.4236/ajibm.2013.33036.
- Al-Mushasha, Nabeel. (2013). Determinants of e-Learning Acceptance in Higher Education Environment Based on Extended Technology Acceptance Model. 261-266. 10.1109/ ECONF.2013.50.
- Al-Adwan, A., Al-Adwan, A. & Smedley, J. (2013).

- Exploring student's acceptance of e-learning using Technology Acceptance Model in Jordanian universities. International Journal of Education and Development using ICT, 9(2),. Open Campus, The University of the West Indies, West Indies. Retrieved February 23, 2020 from https://www.learntechlib.org/p/130283/.
- Arteaga Sánchez, Rocío & Hueros, Ana & Garcia Ordaz, Mercedes. (2013). E-learning and the University of Huelva: A study of WebCT and the technological acceptance model. Campus-Wide Information Systems. 30. 10.1108/10650741311306318.
- Shah, S A Moshadi & Iqbal, Naveed & Yousaf, Saqib & Amjad, Shehla. (2013). Employee Behavior Towards Adoption of E-learning Courses: Validating Technology Acceptance Model. Mediterranean Journal of Social Sciences. 4. 765-774. 10.5901/mjss.2013.v4n14p765.
- Cheng, Yung-Ming. (2013). Exploring the roles of interaction and flow in explaining nurses' elearning acceptance. Nurse education today. 33. 10.1016/j.nedt.2012.02.005.
- Tarhini, Ali & Hone, Kate & Liu, Xiaohui. (2013). Factors Affecting Students' Acceptance of e-Learning Environments in Developing Countries: A Structural Equation Modeling Approach. International Journal of Information and Education Technology. 3. 54-59. 10.7763/ IJIET.2013.V3.233.
- Motaghian, Hediyeh & Hassanzadeh, Alireza. (2013). Factors affecting university instructors' adoption of web-based learning systems: Case study of Iran. Computers & Education. 61. 158-167. 10.1016/j.compedu.2012.09.016.
- Qteishat, Mazen & Alshibly, Haitham. (2013). Factors Influencing the Adoption of E-Learning in Jordan: an Extended TAM Model. European Journal of International Management. 5. 84-100.
- Cheung, Ronnie & Vogel, Doug. (2013). Predicting user acceptance of collaborative technologies: An extension of the technology acceptance model for e-learning. Computers & Education. 63. 160-175. 10.1016/j.compedu.2012.12.003.
- Tarhini, Ali & Hone, Kate & Liu, Xiaohui. (2013). User Acceptance Towards Web-based Learning Systems: Investigating the Role of Social, Organizational and Individual Factors in European Higher Education. Procedia Computer Science. 17. 189-197. 10.1016/j.procs.2013.05.026.

- Punnoose, Alfie. (2012). Determinants of Intention to Use eLearning Based on the Technology Acceptance Model. Journal of Information Technology Education: Research. 11. 301-337. 10.28945/1744.
- Hsia, Jung-Wen & Chang, Chia-Chi & Tseng, Ai-Hua. (2012). Effects of indiviuals' locus of control and computer self-efficacy on their e-learning acceptance in high-tech companies. Behaviour & Information Technology Behaviour & IT. 33. 1-14. 10.1080/0144929X.2012.702284.
- Cheng, Yung-Ming. (2012). Effects of quality antecedents on e-learning acceptance. Internet Research: Electronic Networking Applications and Policy. 22. 10.1108/10662241211235699.
- Abdulhameed, R. A. (2012). E-learning acceptance: Technological key factors for successful students 'engagement in E-learning system.
- Purnomo, Hadi & Lee, Yi-Hsuan. (2012). E-learning adoption in the banking workplace in Indonesia: An empirical study. Information Development. 29. 138-153. 10.1177/0266666912448258.
- Chen, Hong-Ren & Tseng, Hsiao-Fen. (2012). Factors that influence acceptance of web-based elearning systems for the in-service education of junior high school teachers in Taiwan. Evaluation and program planning. 35. 398-406.
- Park, Y., Son, H., and Kim, C. (2012). Investigating the determinants of construction professionals' acceptance of web-based training: An extension of the technology acceptance model. Automation in Construction 22 (2012) 377-386.
- Mohr, Alexander & Holtbrügge, Dirk & Berg, Nicola. (2012). Learning style preferences and the perceived usefulness of e-learning. Teaching in Higher Education TEACH HIGH EDUC. 17. 1-14. 10.1080/13562517.2011.640999.
- Ramayah, T. & Lee, Jason. (2012). System characteristics, satisfaction and e-learning usage: A structural equation model (SEM). Turkish Online Journal of Educational Technology. 11. 196-206.
- Lin, Tung-Cheng & Chen, Ching-Jen. (2012). Validating the Satisfaction and Continuance Intention of E-learning Systems: Combining TAM and IS Success Models. IJDET. 10. 44-54. 10.4018/ idet.2012010103.
- Yi-Hsuan Lee, Yi-Chuan Hsieh, and Chun-Yuan Ma. 2011. A model of organizational employees' elearning systems acceptance. Know.-Based Syst.

- 24, 3 (April 2011), 355-366. DOI:https://doi.org/ 10.1016/j.knosys.2010.09.005
- Bhatiasevi, Veera. (2011). Acceptance of e-learning for users in higher education: An extension of the technology acceptance model. Social Sciences. 6. 513-520. 10.3923/sscience.2011.513.520.
- Li, Yan & Duan, Yanqing & Fu, Zetian & Alford, Philip. (2011). An empirical study on behavioral intention to reuse e-learning systems in rural China. British Journal of Educational Technology. 43. 10.1111/j.1467-8535.2011.01261.x.
- Cheng, Yung-Ming. (2011). Antecedents and consequences of e-learning acceptance. Inf. Syst. J.. 21. 269-299. 10.1111/j.1365-2575.2010.00356.x.
- Lin, Kan-Min. (2011). E-Learning continuance intention: Moderating effects of user e-learning experience. Computers & Education. 56. 515-526. 10.1016/j.compedu.2010.09.017.
- Karaali, Demet & Altin, Cigdem & Calisir, Fethi. (2011). Factors affecting the intention to use a webbased learning system among blue-collar workers in the automotive industry. Computers in Human Behavior. 27. 343-354. 10.1016/j.chb.2010.08.012.
- Soud, A., and Fisal, A., R. (2011). Factors that determine continuance intention to use e-learning system: an empirical investigation. International Conference on Telecommunication Technology and Applications Proc. of CSIT vol.5 IACSIT Press, Singapore.
- Al-alak, Basheer & Alnawas, Ibrahim. (2011).

 Measuring the Acceptance and Adoption of ELearning by Academic Staff. Knowledge
 Management & E-Learning: An International
 Journal. 3.
- Duan, Yanqing & He, Qile & Feng, Weizhe & Li, Daoliang & Fu, Zetian. (2010). A study on elearning take-up intention from an innovation adoption perspective: A case in China. Computers & Education. 55. 237-246. 10.1016/j.compedu.2010.01.009.
- Alenezi, Abdulhameed & Abdul Karim, Abdul Malek & Veloo, Arsaythamby. (2010). An empirical investigation into the role of enjoyment, computer anxiety, computer self-efficacy and Internet experience in influencing the students' intention to use e-learning: a case study from Saudi Arabian government universities. Turkish Online Journal of Educational Technology. 9. 22-

34.

- Lee, Ming-Chi. (2010). Explaining and predicting users' continuance intention toward e-learning: An extension of the expectation-confirmation model. Computers & Education. 54. 506-516. 10.1016/j.compedu.2009.09.002.
- Liu, I., Chen, M.C., Sun, Y.S., Wible, D., & Kuo, C. (2010). Extending the TAM model to explore the factors that affect Intention to Use an Online Learning Community. Comput. Educ., 54, 600-610.
- Arenas-Gaitán, Jorge & Rondan-Cataluña, Francisco & Ramírez-Correa, Patricio. (2010). Gender influence in perception and adoption of E-Learning platforms. International Conference on Data Networks, Communications, Computers Proceedings. 30-35.
- Chen, Hsiu-Ju. (2010). Linking employees' e-learning system use to their overall job outcomes: An empirical study based on the IS success model. Computers & Education. 55. 1628-1639. 10.1016/j.compedu.2010.07.005.
- Mohammad Ahmad Al-hawari Samar Mouakket, (2010), "The influence of technology acceptance model (TAM) factors on students' e-satisfaction and e-retention within the context of UAE e-learning", Education, Business and Society: Contemporary Middle Eastern Issues, Vol. 3 Iss 4 pp. 299 314.
- Lee, Byoung-Chan & Yoon, Jeong-Ok & Lee, In. (2009). Learners' acceptance of e-learning in South Korea: Theories and results. Computers & Education. 53. 1320-1329. 10.1016/ i.compedu.2009.06.014.
- Park, Sung Youl. (2009). An Analysis of the Technology Acceptance Model in Understanding University Students' Behavioral Intention to Use e-Learning. Educational Technology & Society. 12. 150-162.
- Wang, Wei-Tsong & Wang, Chun-Chieh. (2009). An empirical study of instructor adoption of webbased learning systems. Computers & Education. 53. 761-774. 10.1016/j.compedu.2009.02.021.
- Moghadam, Akram & Bairamzadeh, Sona. (2009). Extending the Technology Acceptance Model for E-learning: A Case Study of Iran. 1659-1660. 10.1109/ITNG.2009.152.
- Abbad, Muneer & Morris, David & Nahlik, Carmel. (2009). Looking under the Bonnet: Factors Affecting Student Adoption of E-Learning

- A Study on Identifying the Factors Associated with the E-learning: Using Meta-Analytic Approach
 - Systems in Jordan. International Review of Research in Open and Distance Learning. 10. 10.19173/irrodl.v10i2.596.
- Cho, V., Cheng, T. C. E., & Lai, W. M. J. (2009). The Role of perceived user-interface design in continued usage intention of self-paced e-learning tools. Computers and Education, 53(2), 216-227. https://doi.org/10.1016/j.compedu.2009.01.014
- Sorebo, Oystein & Halvari, Hallgeir & Gulli, Vebjørn & Kristiansen, Roar. (2009). The role of self-determination theory in explaining teachers' motivation to continue to use e-learning technology. Computers & Education. 53. 1177-1187. 10.1016/j.compedu.2009.06.001.
- Roca, Juan & Gagné, Marylène. (2008). Understanding e-learning continuance intention in the workplace: A self-determination theory perspective. Computers in Human Behavior. 24. 1585-1604. 10.1016/j.chb.2007.06.001.
- Park, Namkee & Lee, Kwan & Cheong, Pauline. (2008).
 University Instructors' Acceptance of Electronic
 Courseware: An Application of the Technology
 Acceptance Model. J. Computer-Mediated
 Communication. 13. 163-186.
- Martinez-Torres, Rocio & Toral, S.L. & García, F. & Gallardo, Sergio & Arias-Oliva, Mario & Torres, T.. (2006). A technology acceptance of e-learning tools used in practical laboratory teaching, according to the European higher education area. Behavior and Information Technology. 1-11.
- Chang, Su-Chao & Tung, Feng-Cheng. (2007). An empirical investigation of students' behavioural intentions to use the online learning course websites. British Journal of Educational Technology. 39. 71 83. 10.1111/j.1467-8535.2007.00742.x.
- Hsia, Jung-Wen & Tseng, Ai-Hua. (2008). An Enhanced Technology Acceptance Model for E-Learning Systems in High-Tech Companies in Taiwan: Analyzed by Structural Equation Modeling. Proceedings of the 2008 International Conference on Cyberworlds, CW 2008. 39-44. 10.1109/CW.2008.46.
- Tobing, Vainny & Hamzah, Muzaffar & Sura, Suaini & Amin, Hanudin. (2008). Assessing the acceptability of Adaptive E-Learning System. 5th International Conference on ELearning for Knowledge-Based Society.

- Yuen, Allan & Ma, Will. (2008). Exploring teacher acceptance of e?learning technology. Asia-pacific Journal of Teacher Education ASIA-PAC J TEACH EDUC. 36. 229-243. 10.1080/13598660802232779.
- Zhang, Sheng & Zhao, Jue & Tan, Weiwei. (2008). Extending TAM for Online Learning Systems: An Intrinsic Motivation Perspective. Tsinghua Science & Technology. 13. 312-317. 10.1016/S1007-0214(08)70050-6.
- Padilla-Meléndez, Antonio & Garrido-Moreno, Aurora & Del Aguila-Obra, Ana Rosa. (2008). Factors affecting e-collaboration technology use among management students. Computers & Education. 51. 609-623. 10.1016/j.compedu.2007.06.013.
- Alammary, Jaflah. (2008). FACTORS INFLUENCING THE ADOPTION OF E-LEARNING AT UOB.
- Rezaei, M., Mohammadi, H.M., Asadi, A., & Kalantary, K. (2008). Predicting E-Learning Application in Agricultural Higher Education Using Technology Acceptance Model.
- Liao, Hsiu-Li & Lu, Hsi-Peng. (2008). Richness Versus Parsimony Antecedents of Technology Adoption Model for E-Learning Websites. 8-17. 10.1007/ 978-3-540-85033-5_2.
- Tseng, A., & Hsia, J. (2008). The Impact of Internal Locus of Control on Perceived Usefulness and Perceived Ease of Use in E-Learning: An Extension of the Technology Acceptance Model. 2008 International Conference on Cyberworlds, 815-819.
- Liao, Hsiu-Li & Lu, Hsi-Peng. (2008). The role of experience and innovation characteristics in the adoption and continued use of e-learning websites. Computers & Education. 51. 1405-1416. 10.1016/j.compedu.2007.11.006.
- Lee, Ya-Ching. (2008). The role of perceived resources in online learning adoption. Computers & Education. 50. 1423-1438. 10.1016/j.compedu.2007.01.001.
- Fu, Fong-Ling & Chou, Hung-Gi & Yu, Sheng-Chin. (2007). Activate Interaction Relationships Between Students Acceptance Behavior and E-Learning. 4505. 670-677. 10.1007/978-3-540-72524-4_69.
- Chang, Su-Chao & Tung, Feng-Cheng. (2007). An empirical investigation of students' behavioural intentions to use the online learning course websites. British Journal of Educational Technology. 39. 71 83. 10.1111/j.1467-

- 8535.2007.00742.x.
- Hsia, Jung-Wen. (2007). An enhanced technology acceptance model for e-learning systems in high-tech companies.
- Davis, Robert & Wong, Don. (2007). Conceptualizing and Measuring the Optimal Experience of the eLearning Environment*. Decision Sciences Journal of Innovative Education. 5. 97 126. 10.1111/j.1540-4609.2007.00129.x.
- Hussein, R., Aditiawarman, U., & Mohamed, N. (2007). E-Learning acceptance in a developing country: A case of the Indonesian Open University.
- Chiu, Chao-Min & Chiu, Chao-Sheng & Chang, Hae-Ching. (2007). Examining the integrated influence of fairness and quality on learners? Satisfaction and Web-based learning continuance intention. Inf. Syst. J.. 17. 271-287. 10.1111/j.1365-2575.2007.00238.x.
- Chen, Yi-Cheng & Chen, Chun-yu & Lin, Yi-Chen & Yeh, Ron-Chen. (2007). Predicting College Student' Use of E-Learning Systems: An Attempt to Extend Technology Acceptance Model. 121.
- Liaw, Shu-Sheng & Huang, Hsiu-Mei & Chen, Gwo-Dong. (2007). Surveying instructor and learner attitudes toward E-learning. Computers & Education. 49. 1066-1080. 10.1016/j.compedu.2006.01.001.
- Masrom, Maslin. (2007). Technology acceptance model and E-learning. 12th International Conference on Education. 21.
- Sun, Pei-Chen & Tsai, Ray & Finger, Glenn & Chen, Yueh-Yang & Yeh, Dowming. (2008). What drives a successful e-Learning? An empirical investigation of the critical factors influencing learner satisfaction. Computers & Education. 50. 1183-1202. 10.1016/j.compedu.2006.11.007.
- Roca, Juan & Chiu, Chao-Min & Martínez López, Francisco. (2006). Understanding e-Learning continuance intention: An extension of the technology acceptance model. International Journal of Human-Computer Studies, 64(8), 683-696. International Journal of Human-Computer Studies. 64. 683-696. 10.1016/j.ijhcs.2006.01.003.
- Ifinedo, Princely. (2006). Acceptance and Continuance Intention of Web-based Learning Technologies (WLT) Use Among University Students in a Baltic Country. EJISDC: The Electronic Journal on Information Systems in Developing Countries, ISSN 1681-4835, Vol. 23, 2006. 23. 10.1002/

- j.1681-4835.2006.tb00151.x.
- Ya-Ching Lee, (2006), "An empirical investigation into factors influencing the adoption of an e-learning system", Online Information Review, Vol. 30 Iss 5 pp. 517 541
- Wu, Jiinpo & Tsai, Ray & Chen, Charlie & Wu, Yachen. (2006). An Integrative Model to Predict the Continuance Use of Electronic Learning Systems: Hints for Teaching. International Journal on E-Learning. 5.
- Ong, Chorng-Shyong & Lai, Jung-Yu. (2006). Gender difference in perceptions and relationships among dominants of e-learning acceptance. Computers in Human Behavior. 22. 816-829. 10.1016/j.chb.2004.03.006.
- Saade, Raafat & Kira, Dennis. (2006). Emotional State of Technology Acceptance Model. Issues in Informing Science and Information technology. 3, 403-409.
- Pituch, Keenan & Lee, Yao-kuei. (2006). The influence of system characteristics on E-learning use. Computers & Education. 47. 222-244. 10.1016/j.compedu.2004.10.007.
- Lee, Matthew & Cheung, Christy & Chen, Zhaohui. (2005). Acceptance of Internet-based learning medium: The role of extrinsic and intrinsic motivation. Information & Management. 42. 1095-1104. 10.1016/j.im.2003.10.007.
- Saade, Raafat & Bahli, Bouchaib. (2005). The impact of cognitive absorption on perceived usefulness and perceived ease of use in online learning: An extension of the Technology Acceptance Model. Information & Management. 42. 317-327. 10.1016/j.im.2003.12.013.
- Liu S-H., Liao, H-L., and Peng C-J. (2005). Applying the technology acceptance model and flow theory to online e-learning users' acceptance behaviour. Issues in information systems, Vol.VI, No.2,175-181.
- Martins and Kellermanns (2004). A Model of Business School Students' Acceptance of a Web-Based Course Management System. Academy of Management Learning & Education Vol. 3, No. 1, 7-26.
- Gong, M., Xu, Y., & Yu, M.Y. (2004). An Enhanced Technology Acceptance Model for Web-Based Learning. JISE, 15, 365-374.
- Ong, Chorng-Shyong & Lai, Jung-Yu & Wang, Yi-Shun. (2004). Factors affecting engineers' acceptance

- of asynchronous e-learning system in high-tech companies. Information & Management. 41. 795-804. 10.1016/j.im.2003.08.012.
- Liao, Qinyu; Shim, JP; and Luo, Xin, "Student Acceptance of Web-based Learning Environment: an Empirical Investigation of an Undergraduate IS Course" (2004). AMCIS 2004 Proceedings. 377.
- Yi, Mun & Hwang, Yujong. (2003). Predicting the use of web-based information systems: self-efficacy, enjoyment, learning goal orientation, and the technology acceptance model. International Journal of Human-Computer Studies. 59. 431-449. 10.1016/S0171-5819(03)00114-9.
- Brown, R. T.J. (2002): Individual and technological factors affecting perceived ease of use Webbased learning technologies in a developing country. The Electronic Journal on Information Systems in Developing Countries, 9, 5, pp. 1-15

Other References

- Cronbach, L.J. Coefficient alpha and the internal structure of tests. Psychometrika 16, 297-334 (1951). https://doi.org/10.1007/BF02310555.
- Davis, F.D. (1986). A technology acceptance model for empirically testing new end-user information systems: Theory and results. Massachusetts, United States: Sloan School of Management, Massachusetts Institute of Technology.
- Davis, F. D., and V. Venkatesh. (1996). A critical assessment of potential measurement biases in the technology acceptance model: Three experiments Internet. J. Human-Comput. Stud. 45 19- 45.
- Fornell, C., and Larcker, D. F. (1981). Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. Journal of Marketing Research (18:1), pp. 39-50.
- Venkatesh, V., & Davis, F. D. (2000). A Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies. Management Science, 46 (2), 186-204.
- Venkatesh, V. and Bala, H. (2008). Technology Acceptance Model 3 and a Research Agenda on Interventions. Decision Science, 39 (2), 273-312.
- Venkatesh, V., Morris, M.G., Davis, F.D., & Davis, G.B. (2003). User Acceptance of Information Technology: Toward a Unified View. MIS

Quarterly, 27, 425-478.

Web references

- https://www.learnupon.com/blog/what-is-elearning/
- Christensson, P. (2015, November 5). E-learning Definition. Retrieved 2019, Dec 19, from https://techterms.com
- https://www.allencomm.com/resource/what-iselearning/
- https://economictimes.indiatimes.com/definition/e-learning
- https://www.igi-global.com/dictionary/e-learning/ 8785
- https://www.shiftelearning.com/blog/bid/343658/10-Great-Moments-in-eLearning-History
- https://elearningindustry.com/history-of-elearning-infographic-education-2012
- https://www.talentlms.com/ebook/elearning/historyof-elearning
- https://filtered.com/blog/post/articles/the-history-ofe-learning
- https://www.prnewswire.com/news-releases/the-global-e-learning-market-is-expected-to-reach-238-billion-by-2024-300901582.html
- https://elearningindustry.com/top-elearningstatistics-2019
- https://trainingmag.com/e-learning-market-reach-300-billion-2025/
- https://www.gminsights.com/industry-analysis/ elearning-market-size
- https://www.docebo.com/blog/global-e-learningmarket-infographic/
- https://www.reuters.com/brandfeatures/venture-capital/article?id=72033
- https://www.arizton.com/market-reports/e-learningmarket-size-2024
- https://www.techradar.com/best/best-online-learning-platforms
- https://www.onlinecoursereport.com/top-50universities-offering-online-courses/
- https://www.howspace.com/resources/best-online-learning-platforms-for-organizations
- http://www.businessworld.in/article/E-Learning-Is-Transforming-The-Face-Of-Education-In-India/ 01-12-2018-164717/

- http://www.businessworld.in/article/E-Learning-Is-Transforming-The-Face-Of-Education-In-India/ 01-12-2018-164717/
- https://www.indiatoday.in/education-today/featurephilia/story/the-growth-magnitude-of-e-learning-in-india-1628953-2019-12-17
- https://www.shiksha.com/mba/articles/online-education-in-india-trends-future-prospects-blogId-14763
- http://www.nobleeducation.org/distance-learning-in-india/