What Should be the Sample Size for the Study?

Srilakshminarayana G.

Introduction

Sample size estimation is an important step in conducting the sample surveys effectively and efficiently. It is the number of sample responses needed to draw valid inferences about the key parameters of the study. It is directly linked to the permissible error that one allows in drawing the inferences as well as the confidence level at which the results will be presented. To ensure that the requirements are met, the researcher has to work out a plan to reach a balancing point using a scientific procedure. This scientific procedure should include the key parameter of the study, degree of variability, level of precision, confidence level, and, power of the testing procedure etc. Standard sampling designs that discuss sample size estimation can also be used to estimate the sample size. For example, simple random sampling, stratified random sampling etc., discuss estimation and allocation of sample size to different groups.

When one adopts a questionnaire for the survey, it is important to identify and estimate the key parameter of the study in order to estimate the sample size. Sometimes, it is very useful to apply multivariate techniques like principal component analysis (PCA), factor analysis (FA) etc. to group the variables that are associated or correlated (sometimes not noticed by the researcher) and then estimate the key parameter using the pilot sample.

Copyright © 2014 Shri Dharmasthala Manjunatheshwara Research Centre for Management Studies (SDMRCMS), SDMIMD, Mysore

The case writer(s) Srilakshminarayana.G, Assistant Professor - Quantitative Methods may be reached at lakshminarayana@sdmimd.ac.in Author(s) have prepared this case as the basis for class discussion rather than to illustrate either effective or ineffective handling of the situation. This case is fictionalized and any resemblance to actual person or entities is coincidental. This publication may not be digitized, photocopied, or otherwise reproduced, posted, or transmitted, without the permission of SDMRCMS, SDMIMD, Mysore. For Teaching Notes please contact sdmrcms@sdmimd.ac.in.

The case discussed is related to a researcher who wishes to estimate the sample size using the pilot survey and categorical principal component analysis (CATPCA).

The entire discussion is with respect to CATPCA using SPSS and hence the details are presented with respect to options in SPSS. Only few technical details are given and focus is on using CATPCA in estimation of sample size and further discussion is related to the same.

Situation

Mrs. AS, assistant professor is very busy verifying her research reports, she has obtained from her guide. She has to submit the revised version of the preliminary PhD reports that she has submitted to her guide. The guide asked her to work on estimating the sample size for her study. In order to estimate and understand the behaviour of the key parameters of her research, she has conducted a pilot survey. Now, she is in search of a statistician who can help her in understanding the statistical techniques that will be used to analyze the data and relate the same with the objectives of the study. After a long search, she could find Dr.SLN, who has agreed to help her in analysing the data. The first assignment he has agreed, is to estimate the sample size required to conduct the survey effectively and efficiently.

The data considered is in the area of Human resource management and the study is on work-life balance of women employees in private and public sector organizations.

In order to estimate the sample size, Dr.SLN had considered the pilot data of the study.

He had decided to use the following procedure to estimate the sample size.

Step-1: The key parameter considered is the average work life balance score of private and public sector organizations.

Step-2: To estimate the average work-life balance of private as well as public sector organizations, CATPCA is used.

Step-3: First, using CATPCA, different variables considered in the study are grouped based on their correlation structures, separately for private and public sectors. The grouped variables are called as components. Based on the variance accounted for by each component, the maximum number of components are chosen. Using the component loadings, object scores are computed and in turn used to measure the work-life balance among the women employees of private and public sector organizations separately (Detailed procedure is explained in later part of the discussion).

Step-4: Once the work-life balance is measured for private and publics organizations separately, the average work-life balance score is calculated.

Step-5: Using the average score and at 5% level of significance, the sample size is estimated.

In order to estimate the required parameters to estimate the sample size, a pilot survey was conducted.

Pilot Sample

The sample size considered for the pilot study was 120, out of which 93 are from public sector and 27 are from the private sector. The analysis was carried out separately and discussed in later sections. Only those variables that were used to measure the work-life balance were considered.

What is Categorical Principal Component Analysis (CATPCA)?

Categorical principal component analysis (CATPCA) is used to reduce the dimension of the variables under study, when the variables are measured on ordinal or nominal scale. This procedure quantifies the categorical variables. It is also used to find the relationships between the variables that have not been identified by the researcher (latent relationships amongst the variables under study). The goal is to reduce the original set of variables into a smaller set of uncorrelated components that represent most of the information found in the

original variables. The technique is most useful when a large number of variables prohibits effective interpretation of the relationships between objects (subjects and units). If the variables are measured on interval or ratio, the method will be same as standard principal component analysis (PCA).

Standard principal components analysis assumes linear relationships between numeric variables. On the other hand, the optimal-scaling approach allows variables to be scaled at different levels. Categorical variables are optimally quantified in the specified dimensionality. As a result, nonlinear relationships between variables can be modelled.

The use of Categorical Principal Components Analysis is most appropriate when one looks at studying the patterns of variation in a single set of variables of mixed optimal scaling levels. This technique attempts to reduce the dimensionality of a set of variables while accounting for as much of the variation as possible. Scale values are assigned to each category of every variable so that these values are optimal with respect to the principal components solution.

In the present case, CATPCA is used to identify the relationships between the variables like job satisfaction, job demand, and supervision etc., measured using ordinal scale.

Critical Components of CATPCA Required for the Study

a. Data

The variables are measured on a five point Likert scale with 5 denoting strongly agree, 4- Agree, 3-Neutral, 2-Disagree, 1-Strongly agree. String variable values are always converted into positive integers by ascending alphanumeric order. User-defined missing values, systemmissing values, and values less than 1 are considered missing; one can recode or add a constant to variables with values less than 1 to make them non-missing.

b. Assumption

The data considered for the study contains at least three valid cases. The analysis is based on positive integer data and measured on ordinal scale.

c. Scale and Weight in CATPCA

The original scale is ordinal and the same is preserved even in the scale options. The order of the categories of the observed variable is preserved in the optimally scaled variable. Category points will be on a straight line (vector) through the origin. The resulting transformation fits better than the spline ordinal transformation but is less smooth.

d. Discretization

The Discretization dialog box allows to select a method of recoding the variables. String variables are always converted into positive integers by assigning category indicators according to ascending alphanumeric order. Discretization for string variables applies to these integers. Other variables are left alone by default. The discretized variables are then used in the analysis.

The discretization method used in the case is ranking method.

e. Missing Values

The missing values/cases are excluded from the analysis.

f. Normalization Method

The normalization method used for analysis is the variable principal method.

This option optimizes the association between variables. The coordinates of the variables in the object space are the component loadings (correlations with principal components, such as dimensions and object scores). This is useful when we are primarily interested in the correlation between the variables.

g. Output

The Output dialog box allows to produce tables for object scores, component loadings, iteration history, correlations of original and transformed variables, the variance accounted for per variable and per dimension, category quantifications for selected variables, and descriptive statistics for selected variables.

h. The Save dialog box allows to save discretized data, object scores, transformed values, and approximations to an external IBM SPSS Statistics data file or dataset in the current session. One can also save transformed values, object scores, and approximations to the active dataset.

CATPCA using SPSS

The following give the output of the CATPCA using SPSS and further interpretation is provided accordingly. First, the analysis is presented for Private and then for Public sector.

Private Sector-Under this group, we have 27 cases and the analysis of the same is presented in the following tables.

Table-1Case Processing Summary

Valid Active Cases	27
Active Cases with Missing Values	0
Supplementary Cases	0
Total	27
Cases Used in Analysis	27

Table-2 *Model Summary*

Dimension	Cronbach's	Variance Accounted For			
	Alpha	Total (Eigenvalue)	% of Variance		
1	.960	17.126	32.935		
2	.953	15.329	29.479		
3	.931	11.530	22.173		
4	.797	4.580	8.808		
Total	.999ª	48.566	93.396		
a. Total Cronbach's Alpha is based on the total Eigenvalue.					

One can note that four components are extracted using CATPCA, which accounts for 93% of the variation and the value of the Cronbach alpha suggests that the model is reliable.

Table-3 *Component Loadings*

Variable	Dimension				
-Code	1	2	3	4	
C1a	.920	225	.319	.027	
C1b	.131	.748	.430	.259	
C1c	878	.261	392	069	
C1d	524	.616	163	.541	
C1e	147	559	.423	.526	
C2a	632	.069	.672	182	
C2b	.324	.675	653	.096	

C2c	.554	253	.427	341
C2d	.370	.677	621	071
C3a	.878	261	.392	.069
C3b	130	839	500	.154
C3c	.878	261	.392	.069
C4a	.878	261	.392	.069
C4b	.515	813	213	.143
C4c	.796	.469	364	.033
C5a	.324	.675	653	.097
C5b	.905	219	.359	.048
C5c	.218	.763	.369	.401
C5d	.734	.461	317	.108
C5e	.435	647	191	.476
C5f	.373	.676	625	.005
D1a	201	608	341	016
D1b	.101	.792	.581	128
D1c	.087	.804	.571	110
D1d	.237	.609	564	308
D1e	.880	258	.390	.068
D2a	121	778	593	.144
D2b	101	792	581	.128
D2c	834	022	548	021
D2d	.103	.794	.580	124

D2e	.158	.085	176	.945		
E1	.423	078	665	490		
E2	.498	728	254	033		
E3	874	.261	401	071		
E4	.446	749	155	.147		
E5	.878	226	.411	.081		
E6	.789	.502	333	.057		
E7	.796	.469	364	.033		
E8	.744	.470	320	.018		
F1	.325	.674	652	.106		
F2	.927	.302	181	.109		
F3	.125 .083		155	.899		
F4	878	.261	392	069		
F5	548	.117	.593	.524		
F6	.367	.627	677	.008		
F7	.312	.606	.541	.033		
F8	351	.027	.804	.405		
F9	222	710	636	.193		
F10	.648	080	692	014		
F11	249	.716	.014	.548		
F12	607	.266	456	.556		
F13	.511	814	208	.162		
Variable Principal Normalization.						

Based on the component loadings of the respective variables in the study, the variables are grouped. For example, all those variables whose component loadings are at least 0.5 are grouped to form individual components.

Table-4 *Object Scores*

Respondent	Dimension				
	1	2	3	4	
1	.671	171	736	690	
2	.475	013	403	952	
3	.671	171	736	690	
4	.671	171	736	690	
5	.671	171	736	690	
6	.671	171	736	690	
7	.671	171	736	690	
8	.671	171	736	690	
9	.671	171	736	690	
10	.671	171	736	690	
11	.430	020	174	2.026	
31	-3.104	.922	-1.385	244	
32	-3.104	.922	-1.385	244	
33	.403	.451	802	3.571	
34	.260	.137	127	1.685	
35	.491	.131	521	.191	
39	.345	158	418	070	

41	.514	.070	350	1.250
71	601	-1.272	1.209	.014
72	601	-1.272	1.209	.014
73	.286	2.241	1.643	363
94	601	-1.272	1.209	.014
95	601	-1.272	1.209	.014
96	.286	2.241	1.643	363
117	601	-1.272	1.209	.014
118	601	-1.272	1.209	.014
119	.286	2.241	1.643	363

Note that the above table gives the object scores for the 27 cases and the same are used to measure the work-life balance, which will be discussed in the next section in detail.

Public Sector-Under this group, we have 93 cases and the analysis is presented in the following tables.

Table-5 *Case Processing Summary*

Valid Active Cases	93
Active Cases with Missing Values	0
Supplementary Cases	0
Total	93
Cases Used in Analysis	93

Table-6 *Model Summary*

Alpha		
·	Total (Eigenvalue)	% of Variance
.972	21.306	40.973
.902	8.667	16.667
.849	5.960	11.462
.769	4.074	7.834
.704	3.233	6.217
.996ª	43.240	83.155
	.902 .849 .769	.972 21.306 .902 8.667 .849 5.960 .769 4.074 .704 3.233

a. Total Cronbach's Alpha is based on the total Eigenvalue.

Table-7 *Component Loadings*

Variable- Code	Dimension				
	1	2	3	4	5
C1a	.570	343	174	121	539
C1b	128	.402	033	624	.378
C1c	.517	481	301	.222	397
C1d	.158	399	.032	.650	443
C1e	789	.063	020	.313	314
C2a	869	.246	417	001	061
C2b	.870	166	.066	238	.283

C2c	.533	375	.323	538	.057
C2d	.907	331	.059	055	.064
C3a	.316	054	.083	409	224
C3b	216	.086	.941	.037	181
C3c	715	.274	378	315	110
C4a	643	.656	355	.048	.081
C4b	.279	.642	.317	.117	309
C4c	.756	.075	017	.428	378
C5a	.868	114	.044	251	.244
C5b	.897	237	105	075	079
C5c	.837	.226	331	.187	107
C5d	.943	291	.066	.096	.049
C5e	305	.533	.361	271	399
C5f	.901	186	.026	033	155
D1a	817	.096	041	.281	378
D1b	.175	115	952	.017	.157
D1c	.256	161	929	.042	.156
D1d	.378	615	193	.417	.135
D1e	448	788	112	317	184
D2a	925	.307	011	070	.012
D2b	284	078	.670	.291	.386
D2c	175	155	.752	.139	.375
D2d	757	.083	260	127	.370
	•	•			

D2e	.113	358	.204	.099	.582
E1	527	660	095	184	020
E2	490	453	.221	.515	095
E3	533	564	135	099	048
E4	.626	.498	.199	.177	154
E5	.848	.151	133	327	.171
E6	.850	.226	275	069	203
E7	.678	.410	373	106	064
E8	.627	.613	.090	.219	.102
F1	.919	294	.065	.030	.033
F2	.943	232	.072	.064	.056
F3	.813	226	.362	053	135
F4	815	.303	026	181	180
F5	.472	.771	.102	.328	.177
F6	.431	597	093	.286	.147
F7	740	068	326	.410	004
F8	487	762	113	318	186
F9	527	484	.459	270	197
F10	.459	.683	.106	.328	.169
F11	245	072	280	.580	.475
F12	566	579	084	.241	.275
F13	623	450	.381	.144	.104
Variable Principal Normalization.					

Table-8 *Object Scores*

Respondent		Dimension			
	1	2	3	4	5
12	992	.344	075	098	047
13	549	.668	.287	.128	333
14	.822	-1.002	.176	.198	060
15	1.151	.091	.248	.489	054
16	.249	865	051	1.158	.292
17	.249	865	051	1.158	.292
18	.874	593	.762	-1.405	.352
19	1.181	055	.553	-2.516	-1.224
20	.726	378	.641	541	.494
21	.389	-1.111	.962	226	2.533
22	.633	850	.526	664	1.347
23	.608	933	.999	705	1.212
24	1.287	093	.257	-1.948	-1.242
25	1.256	099	.784	-1.505	-1.051
26	1.407	418	.038	-1.987	-1.590
27	1.383	153	173	-2.629	-1.875
28	.567	844	.790	979	.838
29	1.863	1.037	238	-2.459	-3.375
30	.342	-1.436	.859	.678	2.689
36	.380	-1.184	.665	1.017	1.376

		1			
37	.829	079	.327	098	.242
38	.524	509	.111	026	441
40	.511	506	.252	.593	.136
42	.766	556	.854	.803	-1.437
43	.786	288	297	086	-1.271
44	.577	906	163	1.020	963
45	.468	-1.391	1.016	.370	2.344
46	.465	-1.564	.470	.704	1.667
47	1.026	660	.309	-1.145	586
48	.555	-1.164	.676	153	1.997
49	.545	-1.483	.686	271	2.696
50	.589	731	.540	791	.787
51	992	.344	075	098	047
52	992	.344	075	098	047
53	992	.344	075	098	047
54	992	.344	075	098	047
55	992	.344	075	098	047
56	992	.344	075	098	047
57	992	.344	075	098	047
58	992	.344	075	098	047
59	992	.344	075	098	047
60	992	.344	075	098	047
61	992	.344	075	098	047

62	992	.344	075	098	047
63	1.180	473	-5.153	204	.994
64	.447	-1.384	.057	2.436	-1.825
65	.810	461	.680	971	.100
66	1.982	3.235	.427	1.374	.743
67	992	.344	075	098	047
68	992	.344	075	098	047
69	992	.344	075	098	047
70	992	.344	075	098	047
74	.447	-1.384	.057	2.436	-1.825
75	.810	461	.680	971	.100
76	1.982	3.235	.427	1.374	.743
77	992	.344	075	098	047
78	992	.344	075	098	047
79	992	.344	075	098	047
80	992	.344	075	098	047
81	992	.344	075	098	047
82	992	.344	075	098	047
83	992	.344	075	098	047
84	992	.344	075	098	047
85	992	.344	075	098	047
86	1.180	473	-5.153	204	.994
87	.447	-1.384	.057	2.436	-1.825

88	.810	461	.680	971	.100
89	1.982	3.235	.427	1.374	.743
90	992	.344	075	098	047
91	992	.344	075	098	047
92	992	.344	075	098	047
93	992	.344	075	098	047
97	.447	-1.384	.057	2.436	-1.825
98	.810	461	.680	971	.100
99	1.982	3.235	.427	1.374	.743
100	992	.344	075	098	047
101	992	.344	075	098	047
102	992	.344	075	098	047
103	992	.344	075	098	047
104	992	.344	075	098	047
105	992	.344	075	098	047
106	992	.344	075	098	047
107	992	.344	075	098	047
108	992	.344	075	098	047
109	1.180	473	-5.153	204	.994
110	.447	-1.384	.057	2.436	-1.825
111	.810	461	.680	971	.100
112	1.982	3.235	.427	1.374	.743
113	992	.344	075	098	047

114	992	.344	075	098	047
115	992	.344	075	098	047
116	992	.344	075	098	047
120	.447	-1.384	.057	2.436	-1.825

The object scores represent the score of each respondent with respect to his responses to the question asked. One can note that based on an individual's response, we can measure the degree of work-life balance.

Measuring the Work-Life Balance

The object scores along with the variance explained by each component are considered to compute the work-life balance score. Here, the variance explained by each component is considered as a weight in calculation of the score.

Public Sector

There are 93 respondents under this sector and the object scores are presented in table-8. The percentage of variance explained is given in table-4. Using both the work-life balance scores for each respondent are calculated. For example, the score for the 12th respondent is calculated as in the following. The object scores for the 12th respondent are given for each component in the following table

992	.344	075	098	047
-----	------	-----	-----	-----

Now these scores are multiplied with the corresponding variance percentage explained respectively and the total is taken as the score of the 12th respondent. That is

41%*-0.992+16.7%*0.344+11.5%*-0.075+7.8%*-0.098+6.2%*-0.047=-0.368306729

Similarly, the scores for other respondent are calculated and given in the following table

Table 9 *Measure of Work - Live - Balance*

-0.368306729	-0.368306729	-0.368306729	-0.368306729	0.256508337
-0.091373176	-0.368306729	-0.368306729	-0.368306729	0.198949078
0.201607521	-0.368306729	-0.368306729	-0.368306729	0.157341181
0.550139366	-0.368306729	-0.368306729	-0.368306729	0.506156221
0.061152164	0.036486045	-0.368306729	0.036486045	0.219627492
0.061152164	0.263245628	-0.140074695	-0.368306729	0.199965237
0.258366426	1.554039569	0.036486045	-0.368306729	0.371532253
0.264905016	-0.368306729	0.263245628	-0.368306729	0.11320769
0.296202105	-0.368306729	-0.368306729	-0.368306729	-0.368306729
0.224376374	-0.368306729	-0.368306729	-0.140074695	-0.368306729
0.209817123	-0.368306729	-0.368306729	0.036486045	-0.140074695
0.228165879	-0.368306729	-0.368306729	0.263245628	0.036486045
0.311288729	-0.368306729	-0.368306729	-0.368306729	0.263245628
0.404697805	-0.368306729	-0.368306729	-0.368306729	-0.368306729
0.142523326	0.219554159	-0.368306729	-0.368306729	-0.368306729
0.208813471	0.223052465	0.251171575	-0.368306729	-0.368306729
0.292818807	0.201054082	0.263245628	-0.368306729	0.036486045
0.154390911	0.168390962	-0.368306729	0.086516442	

Note that four values have been removed as outliers. Using these scores, the average score and standard deviation have been calculated. The following table give the estimated sample size for the public sector organizations

Table 10Sample Size Determination

Confidence Level Desired	95%
Half-Width Desired	0.01
Population Stdev.	0.341358638
Minimum Sample Size	4477

Private Sector

There are 27 respondents under private sector and work-life balance scores are calculated as in the case of public sector organizations. The following table gives the work-life scores.

Table 11 *Measure of Work - Life - Balance*

-0.05311669	0.402527476
-0.02081363	0.245972696
-0.05311669	0.10173117
-0.05311669	-0.03164484
-0.05311669	0.22246973
-0.05311669	-0.30352597
-0.05311669	-0.30352597
-0.05311669	-0.30352597
-0.05311669	-0.30352597
-0.05311669	-0.30352597
0.275617723	-0.30352597

Table 12Sample Size Determination

The following table gives the sample size estimated for private sector organizations

Confidence Level Desired	95%
Half-Width Desired	0.01
Population Stdev.	0.200295024
Minimum Sample Size	1542

Note

In both public as well as private sectors, the half width is chosen as 0.01 at 95% confidence level, so that the actual average work-life score will be estimated with a distance of 0.01.

Dr.SLN has concluded the estimation of the sample size and suggested the researcher to collect the respective number of respondents to estimate the parameters to conclude the study.

As continuation of the case, one can look at designing a sampling technique to collect the sample responses. (Hint: One can divide the design into three stages. First stage can be stratified random sampling, second and third stages can be cluster and convenient sampling techniques respectively).