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Abstract

The aim of the study is to empirically investigate the performance of the normal, logistic, Hypersecant,

Laplace, and Cauchy distribution models in terms of value at risk management in NSE sectoral indices.
Ten years of daily closing rates over the period of January 2010 to December 2020, for a total of 2730
observations, have been analysed. Models with steeper peaks and thicker tails than the normal
distribution have been shown to capture key characteristics of financial markets more accurately. The
best VaR estimates come from the Laplace and Hypersecant distributions.

Keywords: Gaussian models; non-Gaussian dynamic models; value-at-risk models; financialrisk
management; market risk.

Introduction

A critical method for financial risk management is normalizing the value at risk (VaR). They need to
measure the estimated amount of loss to the portfolio for a specific holding period at agiven confidence
level (Sarykalin, 2008). Since the Basel Committee on Bank Supervision allows banks to meet capital
requirements based on VaR estimates, enabling banks to use internal models for VaR calculation, the
assessment has become a simple market risk management method (Chockalingam, 2018).

Financial engineering incorporates elements of risk assessment and risk management. At the individual
and institutional level, the main goal is to optimize one's anticipated return while remaining within
reasonable risk limits. Eliminating risk is unlikely, but we settle for boundingrisk at a 99% level, ensuring
that the assets on hand are adequate to meet all contingencies witha likelihood of 0.99. These probability
computations based on historical statistics and, as such,cannot be considered systematic (Han, 2004).
Crises are triggered not by run-of-the-mill incidents but by unusual events—sometimes by a confluence
of extreme events referred to as a perfect storm. Hence, an essential aspect of financial engineering is
estimating tail probabilities, probabilities of relatively uncommon events. Current methods for fitting
probability distributions to observed data are not well equipped for estimating probabilities ofextreme
values. The challenge will provide opportunities for control engineers and scientists (Acharya, 2009),
(Neftci, 2000).

In Finance, the idea of "Value at Risk" is used to attribute risk to a position or portfolio. The 1percent VaR
is the 99th percentile of a probability distribution or distribution function and thelst percentile of a
complementary distribution function (Ball, 2006). Suppose a portfolio of shares has a 1 percent regular
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VaR of $1 million. In that case, the likelihood is 0.01 that the portfolio will lose more than $1 million in
value over a single day if no trades occur. Quantifying VaR is essential for many financial institutions
(Penza, 2011).

The Market Risk function usually calculates from historical observations. This method faces many
drawbacks, such as insufficient sample numbers, improper modelling assumptions, and inaccurate
performance (Trenca, 2011), (Sharma, 2012).

When using historical information, one usually fits a Gaussian distribution to the data.However, it is
essential to have a good fit for the "tail" of the distribution because it is most critical to measure risk
correctly (McNeil, 2000).

Much of investment management focus on full markets and the Black-Scholes formula. A complete
market is one in which hedging strategies cannot effectively reproduce the market's price fluctuations.
The assumption that asset prices follow a log-normal distribution, orGaussian distribution, concludes that
regular fluctuations are normal. After all, real asset pricesdo not behave in the same manner as log-normal
distributions (Jondeau, 2007), (Teneng, 2011).

Asset returns can see to adopt a "stable" distribution over long period. Each stable distributionhas a
related a that ranges from 0 to 2. The Gaussian is the only distribution with a finite variance that is not
necessarily complex or chaotic. All other bimodal distributions have a lowerbound of < 2 and infinite
variance. If a < 1, then the mean may be infinite in a financial data set. However, this condition seldom
occurs. Real movements in asset values are said to be heavy-tailed. Moreover, as seen in the graph to the
right, real asset movements are best represented by stable distributions of a far below the critical value
of 2. When a is small, the tails decay more slowly, and as a increases, the error in Gaussian
approximations increases (Kimball, 2000), (Makridakis, 2010).

Averages of heavy-tailed random variables also obey the law of large numbers (the average converges in
probability to the real mean as the number of samples increases). However, do not follow the central
limit theorem (fluctuations about the real mean are not necessarily Gaussian). Broad abnormal returns
are more "burst" in terms of heavy-tailed distributions. In short, unusual events do not occur as
infrequently as log-normal models say. Broad swings (tenor more standard deviations when log-normal
approximations use) are more common than is indicated by the typical log-normal model (Vidyasagar,
2010), (Bianchi, 2019).

We initially evaluate the Value-at-Risk forecastability of a broader selection of sectoral indices in the
context of non-gaussian distributions, such as Normal, Logistic, Hypersecant, Laplace, and Cauchy, for the
daily log returns. Additionally, we present a method for generating a forecastability indicator (with a
predetermined probability) by employing a series of confidence interval tests.

Methodology

An empirical distribution function of stock returns how to apply those distributions to model these stock
returns and determine whether they fit decently. Whether the fit is terrible so in other terms, which
distribution does fit the data the best, But the practical purpose of all these.sometimes challenging
mathematical tasks well one of the most straightforward applications of distributions to practical finance
calculations or considerations is Value Risk.

Investors assume that the portfolio returns followed a particular distribution and investigated itmostly
using the normality assumption. However, most of the research discussed extensively in the introduction
chapter points out that the normality assumption often violates.

If the researcher wants to apply parametric value at risk, for example, variance-covariance, orknown by
many names, a researcher might need to consider another distribution rather than normal. Apply in five
distinct distributions, four of them non-normal, featuring various degreesof heavy or fat tails to calculating
value at risk. For various thresholds to do that mathematically, first need to derive the circled quantile
function for each distribution function.Start with the cumulative distribution function in each of those
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four cases, and those distribution functions might seem familiar. What we need today is to calculate or
derive the inverse function as the cumulative distribution function gives us the probability that an absolute
value of x will not exceed by a random variable drawn from that distribution. For value at risk purposes,
we need to know the inverse we need to know given a particular threshold of the loss that we will achieve
in the end percent of worst-case scenarios.

Here functional relationship where x is our independent variable and f(x) is our dependent variable.
However, we need the inverse we need to derive the function where we express x. Hence, our return in
that case in terms of f(x), so in our case, probability or VaR the worst- case percentage scenarios. Hence,
in each of those four distribution functions, we need to applysome mathematical transformations to
derive the inverse function.

Normal Distribution

The Normal distribution is a good approximation to many other distributions for various applications due
in part to the Central Limit Theorem, making it a good approximation to manyother distributions.

Variations of a naturally occurring variable also display distributions that resemble a "normal
distribution." Examplesinclude adult height, arm span. The population data generally conformto a straight
line, but there is a bit more density near the tails.

The normal inverse function is defined in terms of the normal cdf as
x=F*(-1) (plu,0)={x:F(xlu,0)=p},
Logistic distribution

Logistic distributions are often used in demographic and economic modelling because they aresimilar to
the standard distribution but appear to have a slightly higher peak. The term does notoften appear in risk
analysis models.

The cumulative function use as a basis for a 'growth curve' whose distribution function allowsfor being
modelled as a Sech-Squared distribution. It derives the limiting distribution as n reaches infinity of the
uniform mid-range (average of the maximum and lowest values) of a random sample of size n from an
exponential-type distribution.

Inverse Cumulative Distribution Function

F(x) = i—u

14+e a

1 _x—yu
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Hyperbolic-Secant distribution

The Hyperbolic-Secant distribution is asymmetric distribution similar to the Regular distribution with
increased peakedness, so it is called a more extreme variant of the Normal. Examples of the Hyperbolic-
Secant distribution are shown below with their mean and standarddeviation and the standard Normal
distribution.

The Hyperbolic-Secant distribution use to suit data that tend to be roughly Normal in distribution but
show smaller shoulders, just as the Student Distribution and the Generalized Error Distribution are
alternatives for data that appear to be larger than a Normal.

Inverse Cumulative Distribution Function

2 TX—
F(x) = —arctan (ez (x_au))
s
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2 2 0o
20 s
X=u +?ln (tan (EF(x)))

Laplace distribution

X and Y are two equivalent exponential (s) distributions which differ by m units when shiftedm to the
right (m, s). The Laplace distribution in the figure shares the same form as a normal distribution, but has
a sharper apex and longer tails than a Normal distribution.
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The Laplace distribution use in several particular applications, but almost all of them refer backto the fact
that it has relatively long tails instead of the Normal distribution. It has recently become widespread in
modelling financial variables (Brownian-Laplace motion) due to the greater likelihood of extreme values.
They provide a detailed study of the Laplace distributionin the monograph of (Kotz, 2001).

Inverse Cumulative Distribution Function

1 x—u
F(x)=ze b,x<u

X—pt
2F(x)=e b

In(2F(x)) = x%

x = u + bln(2F(x))

Cauchy distribution

The Cauchy distribution derives two independents Normal (0,1) distributions, respectively X and Y, where
X/Y = Cauchy (0,1). The Cauchy (a, b) move to have a median at a and b timesthe spread of a Cauchy (0,1).

The Cauchy distribution rare to use in measuring risk. A semiconductor is used in many areas,including
physical anthropology, electrical and mechanical theory, and calibration problems. In physics, Lorentzian
distribution is what researchers define as the distribution of the energy of an unstable state in quantum
mechanics. CFD simulation is used to predict the points of impact from the straight line of particles
released from a point source. This Cauchy distributionis used mainly to demonstrate how 'smarter' you
are with individual judgments.

Inverse Cumulative Distribution Function

1 xX—u
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Data

This study uses the daily return of NSE Nifty fifty and selected sectoral indices close prices from NSE
website (www.nseindia.com) over the period from January 2010 to December 2020.These close prices are

75
x = u+ ytan (wF(x) _E)

converted to daily return Log Return series.

Table 3.1 ADF Unit Root Test Results (Daily Returns of NSE Sectoral Indices)

Indices t-Statistic | Probability
Nifty 50 Augmented Dickey-Fuller test statistic -52.0156 0.0001
Test critical values: 1% level -3.43256
5% level -2.8624
10% level -2.56727
Auto
Augmented Dickey-Fuller test statistic -49.7029 0.0001
Test critical values: 1% level -3.43256
5% level -2.8624
10% level -2.56727
Bank Augmented Dickey-Fuller test statistic -48.9721 0.0001
Test critical values: 1% level -3.43256
5% level -2.8624
10% level -2.56727
FinancialService Augmented Dickey-Fuller test statistic -49.6846 0.0001
Test critical values: 1% level -3.43256
5% level -2.8624
10% level -2.56727
FMCG Augmented Dickey-Fuller test statistic -52.6229 0.0001
Test critical values: 1% level -3.43256
5% level -2.8624
10% level -2.56727
Health Care Augmented Dickey-Fuller test statistic -48.9407 0.0001
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Test critical values: 1% level -3.43256
5% level -2.8624
10% level -2.56727
IT Augmented Dickey-Fuller test statistic -52.8998 0.0001
Test critical values: 1% level -3.43256
5% level -2.8624
10% level -2.56727
Media Augmented Dickey-Fuller test statistic -50.4713 0.0001
Test critical values: 1% level -3.43256
5% level -2.8624
10% level -2.56727
Pharma Augmented Dickey-Fuller test statistic -49.9256 0.0001
Test critical values: 1% level -3.43256
5% level -2.8624
10% level -2.56727
Private bank Augmented Dickey-Fuller test statistic -48.544 0.0001
Test critical values: 1% level -3.43256
5% level -2.8624
10% level -2.56727
Realty Augmented Dickey-Fuller test statistic -47.6316 0.0001
Test critical values: 1% level -3.43256
5% level -2.8624
10% level -2.56727

A unit root test detects if a non-stationary time series variable has a unit root. The null hypothesis is the
presence of a unit root, while the alternative hypothesis is stationarity, trend stationarity, or explosive
root. Table 3.1 indicates that the unit root test shows that the first difference between the Nifty Fifty is
all stationary.

Analysis and Discussion

For each index, the unconditional mean of daily returns is very close to zero. The unconditionalstandard
deviation is especially high for Realty (0.021113). For the rest of stock index returnsthe standard deviation
moves between 0.011019 (FMCG). The skewness statistic is negative and significant for all the indexes.
This means that the distribution of those returns is skewed to the left. For all the indexes considered, the
excess kurtosis statistic is very large and significant at 1% level implying that the distributions of those
returns have much thicker tails than the normal distribution. Similarly, the Jarque-Bera statistic is
significant rejecting the assumption of normality.
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All of them find evidence that the empirical distribution of the financial return is asymmetric and exhibits
a significantly excess of kurtosis (fat tails and peakness). In order to capture the non-normal
characteristics observed in our data set, we fit several Parametric distributions: Logistic, Hypersecant,
Laplace, Cauchy and Normal distributions. In Table 3.2 we present theestimated parameters of these

distributions.
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Table 4.1. Descriptive Statistics for Daily Returns of Sectoral Indices of NSE

Sectoral Indices Mean Median Maximum Minimum Std. Dev. | Skewness | Kurtosis [Jarque-Bera| Probability
Nifty 50 0.00036 0.000637 0.084003 -0.139038 0.011026 -1.01326 17.88492 25660.28 0
Auto 0.000389 0.00073 0.098997 -0.149055 0.013729 -0.43986 12.62099 10613.23 0
Bank 0.000452 0.000742 0.099951 -0.18313 0.015568 -0.64711 13.772 13384.73 0
Financial Service 0.000521 0.000799 0.089107 -0.173623 0.01475 -0.76955 13.91464 | 13815.35 0
FMCG 0.000566 0.000869 0.079906 -0.111998 0.011019 -0.36594 11.78087 8828.247 0
HealthCare 0.00047 0.000575 0.087976 -0.086927 0.01105 -0.3488 8.75701 3823.989 0
IT 0.000519 0.000627 0.08922 -0.124903 0.013319 -0.6733 12.39616 10245.25 0
Media 8.86E-06 0.000388 0.080423 -0.178817 0.015543 -0.91346 12.4026 10432.34 0
Pharma 0.000453 0.000586 0.09865 -0.093507 0.012033 -0.21809 8.445107 3392.994 0
Private Bank 0.000581 0.000663 0.104854 -0.196954 0.015723 -0.74188 16.32615 | 20443.36 0
Realty -0.000179 0.0011 0.08093 -0.123348 0.021113 -0.46052 5.332165 714.9197 0

Note: This table presents the descriptive statistics of the daily percentage returns of NSE Sectoral Indices. The JB statistic is distributed as the Chi-square withtwo
degrees of freedom. The value for kurtosis is greater than the Normal distribution value (+3), suggesting that the regular return distribution has characteristics of "sharp

peak" and "fat tail." Study denies the null hypothesis that the return sequence Normally distributed.
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Table 4.2 Maximum likelihood estimates of alternative distribution functions

Sectoral Indices Normal Logistic Hypersecant Laplace Cauchy
u z u z U z u o A u o
Nifty 50 3.60E-04 | 0.01103 | 3.60E-04 | 0.00608 | 3.60E-04 | 0.01103 | 3.60E-04 | 0.01103 128.26 | 7.74E-04 | 0.00522
Auto 3.89E-04 | 0.01373 | 3.89E-04 | 0.00757 | 3.89E-04 | 0.01373 | 3.89E-04 | 0.01373 103.01 | 7.86E-04 | 0.00675
Bank 4.52E-04 | 0.01557 | 4.52E-04 | 0.00858 | 4.52E-04 | 0.01557 | 4.52E-04 | 0.01557 90.841 | 7.85E-04 | 0.00721
Financial 5.21E-04 | 0.01475 | 5.21E-04 | 0.00813 | 5.21E-04 | 0.01475 | 5.21E-04 | 0.01475 95.879 | 7.95E-04 | 0.00685
Service
FMCG 5.66E-04 | 0.01102 | 5.66E-04 | 0.00608 | 5.66E-04 | 0.01102 | 5.66E-04 | 0.01102 128.34 | 8.44E-04 | 0.00532
HealthCare | 4.70E-04 | 0.01105 | 4.70E-04 | 0.00609 | 4.70E-04 | 0.01105 | 4.70E-04 | 0.01105 127.98 | 7.45E-04 | 0.00552
IT 5.19E-04 | 0.01332 | 5.19E-04 | 0.00734 | 5.19E-04 | 0.01332 | 5.19E-04 | 0.01332 106.18 | 7.08E-04 | 0.00618
Media 8.86E-06 | 0.01554 | 8.86E-06 | 0.00857 | 8.86E-06 | 0.01554 | 8.86E-06 | 0.01554 90.988 | 6.51E-04 | 0.00777
Pharma 4.53E-04 | 0.01203 | 4.53E-04 | 0.00663 | 4.53E-04 | 0.01203 | 4.53E-04 | 0.01203 117.53 | 6.49E-04 | 0.00598
Private Bank | 5.81E-04 | 0.01572 | 5.81E-04 | 0.00867 | 5.81E-04 | 0.01572 | 5.81E-04 | 0.01572 89.948 7.18E-04 | 0.00722
Realty -1.79E-04 | 0.02111 | -1.79E-04 | 0.01164 |-1.79E-04 | 0.02111 |-1.79E-04 | 0.02111 66.984 0.0013 | 0.01093

Note: This table provides the estimates for the mean (u) and the standard deviation (o) of log-return. As expected, these estimates are quite similar across
distributions and do notdiffer much from the simple arithmetic means and standard deviations of log-returns.
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Comparison of the distributions in statistical terms

In this section we want to answer the following question: Which distribution is the best one forfitting asset
returns? The above results provide strong support to the hypothesis that stock returns are not normal.
Kolmogorov-Smirnov Goodness-of-Fit Test

The Kolmogorov-Smirnov test is used to decide if a sample comes from a population with a specific
distribution.

The Kolmogorov-Smirnov test is defined by:

Null:  The data follow a specified distribution Alternative: The data do not follow the specified
distribution

Cumulative Probability
o = o
E-3 (=] o

o
ra

0
-4

Figure 4.1 Kolmogorov-Smirnov statistic

Illustration of the Kolmogorov—Smirnov statistic. The red line is a model CDF, the blue line isan empirical
CDF, and the black arrow is the K-S statistic.

If researchers are using a technique that makes a normality (or some other type of distributional)
assumption, it is important to confirm that this assumption is in fact justified. Ifit is, the more powerful
parametric techniques can be used. If the distributional assumption is not justified, using a non-
parametric or robust technique may be required.

In order to enhance the robustness of the fitting results, we performed the Kolmogorov— Smirnov test
for the goodness-of-fit test. According to the test results given in Tables. we candetermine which
theoretical distribution differs significantly from the given return distributionfor each stock index. Based
on the Kolmogorov—Smirnov test, we determined that the distributions in bold are able to describe the
return distribution with the given significance level.

The Kolmogorov—Smirnov test uses the whole samples to calculate the statistics, which represent the
maximum difference value between the empirical distribution function and the theoretical distribution
function. However, in extreme cases, the left and the right tails of the return distribution are usually
affected in terms of risk management. In other words, the tails of the return distribution and the risk
management are interrelated.
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Table 4.3 Goodness-of-fit tests

Sectoral indices| Sample Normal Logistic Hypersecant Laplace Cauchy
Size
Statistic | P-Value | Statistic | P-Value Statistic | P-Value | Statistic | P-Value | Statistic | P-Value
Nifty 50 2729 0.06412 | 3.33E-10 | 0.04592 | 1.93E-05 | 0.03185 | 0.00772 | 0.0304 |0.01265* | 0.05807 | 1.90E-08
Auto 2729 0.05537 | 1.02E-07 | 0.0328 | 5.51E-03 | 0.02093 |0.1803*** 0.03112 | 0.0099* | 0.05765 | 2.49E-08
Bank 272 0.06444 | 2.65E-10 | 0.04372 | 5.68E-05 | 0.02956 |0.01663*| 0.02209 |0.13741** 0.05024 | 1.99E-06
*
Financial Service] 2729 0.06595 | 9.03E-11 | 0.04563 | 2.23E-05 | 0.03134 | 0.00919 | 0.02508 |0.06353** 0.05069 | 1.54E-06
*
FMCG 2729 0.05832 | 1.62E-08 | 0.03698 | 0.00112 0.02185 |0.14535*%* 0.03065 | 0.0116* | 0.05627 | 5.87E-08
*
HealthCare 2729 0.05153 | 9.67E-07 | 0.03336 | 0.0045 0.022 |0.1404**%* 0.03457 | 0.00287 | 0.0595 | 7.59E-09
IT 2729 0.06626 | 7.21E-11 | 0.04574 | 2.11E-05 | 0.03146 | 0.00882 | 0.02255 |0.12282** 0.0555 | 9.43E-08
*
Media 2729 0.05836 | 1.58E-08 | 0.04039 | 2.64E-04 | 0.02765 |0.03027** 0.03995 | 3.20E-04 | 0.06059 | 3.70E-09
Pharma 2729 0.05255 | 5.42E-07 | 0.03233 | 0.00652 | 0.02039 |0.20387** 0.0274 |0.03264** 0.0577 |2.41E-08
*
Private Bank 2729 0.06795 | 2.09E-11 | 0.04625 | 1.64E-05 | 0.03078 |0.01112*| 0.01626 |0.46131** 0.04983 | 2.48E-06
*
Realty 2729 0.04985 | 2.45E-06 | 0.03534 | 0.00214 | 0.03148 | 0.00875 | 0.05541 | 9.97E-08 | 0.06376 | 4.28E-10

Note: Significance levels, 0.05***,0.02** and 0.01* shows not rejecting the null hypothesis.
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Looking to each figure, we chose the best-fit candidate distributions for the left tail in the returndistribution for each
stock index. Therefore, Laplace distribution fits in Nifty 50(1%), Auto (1%), Bank (all levels), Financial Service (all
levels) FMCG (1%), IT (all levels), Pharma (1%and 2%), and Private Bank (all levels). Hypersecant distribution fits in
Auto (all levels), Bank(1%), FMCG (all levels), Healthcare (all levels), Media (1% and 2%), Pharma (all levels), and
Private Bank (1%). Logistic distribution not fit in any sectoral indices but it comes second bestdistribution after the
right distribution fit. None of the distributions fits in Nifty Realty Sector.Normal and Cauchy distributions not fit in
any sectoral indices but its highly useful in terms ofVaR Comparison among other distributions.

Evaluating the performance in terms of VaR

In this section we compare the normal and the skewed distributions in terms of VaR. The comparison is carried
out evaluating (i) the accuracy of the VaR estimates and (ii) the losses that VaR produces. For each distribution, we
use parametric approaches to forecast the VaR out-of-the-sample one-step-ahead at 1%, 0.25% and 0.5%
confidence level.

Table 4.4 Ratio of VaR a=0.1% for each VaR model across NSE Sectoral Indices

Normal Logistic Hypersecant Laplace Cauchy

Nifty 50 -2.53% -2.76% -2.88% -4.28% -16.53%
Auto -3.16% -3.44% -3.59% -5.33% -21.40%
Bank -3.58% -3.90% -4.07% -6.05% -22.86%
Financial Service -3.38% -3.68% -3.85% -5.72% -21.72%
FMCG -2.51% -2.74% -2.86% -4.25% -16.84%
HealthCare -2.52% -2.75% -2.87% -4.28% -17.49%
IT -3.05% -3.32% -3.47% -5.16% -19.59%
Media -3.61% -3.94% -4.11% -6.08% -24.66%
Pharma -2.75% -3.00% -3.14% -4.66% -18.96%
Private Bank -3.60% -3.93% -4.10% -6.09% -22.90%
Realty -4.93% -5.37% -5.60% -8.28% -34.65%

Note: Bold figures indicate the Most favoured models.

Table 4.4 indicates that Laplace distribution is considered as the most favoured model in highlyvolatile indices like
Nifty 50, Auto, Bank, Financial Services, FMCG, IT, Pharma, Private Bank and PSU Bank. The Hypersecant
distribution also best model in Estimation of VaR in Sectors like Auto, Bank, Consumer Durables, FMCG, Healthcare,
Media, Pharma, and PrivateBank. The results of Normal and Cauchy distribution reveal the Least favoured models
in VaREstimation.
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Table 4.5 Ratio of VaR a=0.25% for each VaR model across NSE Sectoral Indices

Normal Logistic Hypersecant Laplace Cauchy

Nifty 50 -3.06% -3.61% -3.85% -5.81% -66.38%
Auto -3.82% -4.49% -4.80% -7.24% -85.86%
Bank -4.33% -5.09% -5.45% -8.20% -91.72%
Financial Service -4.09% -4.82% -5.15% -7.76% -87.14%
FMCG -3.04% -3.58% -3.83% -5.78% -67.65%
HealthCare -3.05% -3.60% -3.85% -5.81% -70.21%
IT -3.69% -4.34% -4.65% -7.01% -78.61%
Media -4.36% -5.13% -5.48% -8.23% -98.86%
Pharma -3.33% -3.93% -4.20% -6.33% -76.07%
Private Bank -4.35% -5.13% -5.49% -8.27% -91.85%
Realty -5.94% -6.99% -7.46% -11.20% -139.03%

Note: Bold figures indicate the Most favoured models.

Table 4.5 indicates that Laplace distribution is considered as the most favoured model in extremely unpredictable
indices like Bank, Financial Services, IT, Pharma and Private Bank. The Hypersecant distribution also best model in
Estimation of VaR in Sectors like Auto, FMCG, Healthcare, Media, and Pharma.
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Table 4.6 Ratio of VaR a=0.5% for each VaR model across NSE Sectoral Indices

Normal Logistic Hypersecant Laplace Cauchy

Nifty 50 -2.81% -3.18% -3.37% -5.04% -33.15%
Auto -3.50% -3.97% -4.20% -6.28% -42.89%
Bank -3.97% -4.50% -4.76% -7.13% -45.82%
FinancialService -3.75% -4.25% -4.50% -6.74% -43.53%
FMCG -2.78% -3.16% -3.34% -5.02% -33.78%
HealthCare -2.80% -3.18% -3.36% -5.04% -35.06%
IT -3.38% -3.83% -4.06% -6.08% -39.27%
Media -4.00% -4.54% -4.79% -7.16% -49.40%
Pharma -3.05% -3.46% -3.67% -5.49% -38.00%
Private Bank -3.99% -4.53% -4.79% -7.18% -45.89%
Realty -5.46% -6.18% -6.53% -9.74% -69.45%

Note: Bold figures indicate the Most favoured models.

Table 4.6 indicates that Laplace distribution is considered as the most favoured model indiceslike Bank,
Financial Services, IT, Pharma and Private Bank. The Hypersecant distribution alsobest model in
Estimation of VaR in Sectors like Auto, FMCG, Healthcare, and Pharma.

Overall study concludes that Normal distribution performs very poor in estimating VaR (this
distributionunderestimate risk in almost all indices). After the normal distribution the Logistic
distribution also poorly performedexcept in two indices Hypersecant and Laplace distributions
considered as most favoured distributions and estimates VaR most precisely manner. Cauchy
distribution advocate unlimited risk in VaR Estimation.

Conclusion

This section evaluates the performance of several skewed and symmetric distributions in modelling
the tail behavior of daily returns and in forecasting VaR. The parametric distributions considered are
Normal, Logistic, Hypersecant, Laplace and Cauchy distributions.

For this study we have used daily returns of NSE Sectoral Indices: Nifty 50, Auto, Bank, Consumer
Durables, Financial Service, FMCG, HealthCare, IT, Media, Oil and Gas, Pharma,Private Bank, PSU bank
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and Realty. The sample used for the statistical analysis runs from 1% January 2010 to 31 December
2020.

From the results presented in the chapter, we concluded that the skewness and fat tail distributions
outperform the normal one in fitting financial returns and forecasting VaR. Among all the Parametric
distributions considered in this paper, Laplace distribution and Hypersecant distribution estimate the
best VaR results (Taylor, 2019). The normal distributionis the least performed and underestimated risk.
Cauchy distribution estimates the unlimited orworst loss occur in the VaR analysis (Alzaatreh, 2016).

Extreme occurrences do occur on occasion, even in generally conservative risk models. By definition,
extreme events are outliers. Because it is hard to eliminate risk when investing, therisk from extreme
events is moved elsewhere and compensated for with reduced projected profits. Studying these
events and statistically modelling them is beneficial when the knowledge successfully integrates into
the overall system without affecting the other elementsof the study. Separate assessments of a
distribution's outliers and centre values are likely to getboth parts inaccurate if not done correctly.
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